Cargando…
Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics
In this critical review, we examine the application of predictive models, for example, classifiers, trained using machine learning (ML) to assist in interpretation of functional neuroimaging data. Our primary goal is to summarize how ML is being applied and critically assess common practices. Our re...
Autores principales: | Cwiek, Andrew, Rajtmajer, Sarah M., Wyble, Bradley, Honavar, Vasant, Grossner, Emily, Hillary, Frank G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942606/ https://www.ncbi.nlm.nih.gov/pubmed/35350584 http://dx.doi.org/10.1162/netn_a_00212 |
Ejemplares similares
-
Connectome hubs at resting state in children and adolescents: Reproducibility and psychopathological correlation
por: Sato, João Ricardo, et al.
Publicado: (2016) -
Constructing the resting state structural connectome
por: Ajilore, Olusola, et al.
Publicado: (2013) -
Diminished neural network dynamics after moderate and severe traumatic brain injury
por: Gilbert, Nicholas, et al.
Publicado: (2018) -
Brain tumors disrupt the resting-state connectome()
por: Hadjiabadi, Darian H., et al.
Publicado: (2018) -
Challenges and considerations for reproducibility of STARR-seq assays
por: Das, Maitreya, et al.
Publicado: (2023)