Cargando…

Clinical Application of Early Warning Scoring Based on BiLSTM-Attention in Emergency Obstetric Preexamination and Triage

Maternity is a special category of population and the criteria for emergency prescreening cannot be directly applied to adults. Therefore, a set of criteria for grading maternal conditions should be established. In this paper, we have combined the semantic analysis technique of BiLSTM-Attention neur...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Song, Jiang, Xue, Guo, AiLing, Zuo, Kun, Zhang, Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942667/
https://www.ncbi.nlm.nih.gov/pubmed/35340245
http://dx.doi.org/10.1155/2022/6274230
Descripción
Sumario:Maternity is a special category of population and the criteria for emergency prescreening cannot be directly applied to adults. Therefore, a set of criteria for grading maternal conditions should be established. In this paper, we have combined the semantic analysis technique of BiLSTM-Attention neural network and fuzzy defect risk assessment method, to develop a hybrid approach, to preprocess the text of emergency obstetric prescreening information. Furthermore, we have used word2vec to characterize the word embedding vector and highlight the features related to the degree of defects of emergency obstetric prescreening information through the attention mechanism and obtain the semantic feature vector of the warning information. BiLSTM-Attention neural network has the dual advantages of extracting bidirectional semantic information and giving weight to important judgment information which has effectively improved the semantic understanding accuracy. Experimental tests and application analysis show that the judgment model which is based on proposed method has accurately classified and graded the defects of emergency obstetric prescreening alerts. Additionally, the accuracy and microaverage value are used as evaluation indexes.