Cargando…

The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue

Self-assembling (glyco)protein surface layers (S-layers) are ubiquitous prokaryotic cell-surface structures involved in structural maintenance, nutrient diffusion, host adhesion, virulence, and other processes, which makes them appealing targets for therapeutics and biotechnological applications as...

Descripción completa

Detalles Bibliográficos
Autores principales: Legg, Max S.G., Hager-Mair, Fiona F., Krauter, Simon, Gagnon, Susannah M.L., Lòpez-Guzmán, Arturo, Lim, Charlie, Blaukopf, Markus, Kosma, Paul, Schäffer, Christina, Evans, Stephen V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942822/
https://www.ncbi.nlm.nih.gov/pubmed/35189140
http://dx.doi.org/10.1016/j.jbc.2022.101745
_version_ 1784673390433402880
author Legg, Max S.G.
Hager-Mair, Fiona F.
Krauter, Simon
Gagnon, Susannah M.L.
Lòpez-Guzmán, Arturo
Lim, Charlie
Blaukopf, Markus
Kosma, Paul
Schäffer, Christina
Evans, Stephen V.
author_facet Legg, Max S.G.
Hager-Mair, Fiona F.
Krauter, Simon
Gagnon, Susannah M.L.
Lòpez-Guzmán, Arturo
Lim, Charlie
Blaukopf, Markus
Kosma, Paul
Schäffer, Christina
Evans, Stephen V.
author_sort Legg, Max S.G.
collection PubMed
description Self-assembling (glyco)protein surface layers (S-layers) are ubiquitous prokaryotic cell-surface structures involved in structural maintenance, nutrient diffusion, host adhesion, virulence, and other processes, which makes them appealing targets for therapeutics and biotechnological applications as biosensors or drug delivery systems. However, unlocking this potential requires expanding our understanding of S-layer properties, especially the details of surface-attachment. S-layers of Gram-positive bacteria often are attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Cocrystal structures of the SLH domain trimer from the Paenibacillus alvei S-layer protein SpaA (SpaA(SLH)) with synthetic, terminal SCWP disaccharide and trisaccharide analogs, together with isothermal titration calorimetry binding analyses, reveal that while SpaA(SLH) accommodates longer biologically relevant SCWP ligands within both its primary (G2) and secondary (G1) binding sites, the terminal pyruvylated ManNAc moiety serves as the nearly exclusive SCWP anchoring point. Binding is accompanied by displacement of a flexible loop adjacent to the receptor site that enhances the complementarity between protein and ligand, including electrostatic complementarity with the terminal pyruvate moiety. Remarkably, binding of the pyruvylated monosaccharide SCWP fragment alone is sufficient to cause rearrangement of the receptor-binding sites in a manner necessary to accommodate longer SCWP fragments. The observation of multiple conformations in longer oligosaccharides bound to the protein, together with the demonstrated functionality of two of the three SCWP receptor-binding sites, reveals how the SpaA(SLH)-SCWP interaction has evolved to accommodate longer SCWP ligands and alleviate the strain inherent to bacterial S-layer adhesion during growth and division.
format Online
Article
Text
id pubmed-8942822
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-89428222022-03-31 The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue Legg, Max S.G. Hager-Mair, Fiona F. Krauter, Simon Gagnon, Susannah M.L. Lòpez-Guzmán, Arturo Lim, Charlie Blaukopf, Markus Kosma, Paul Schäffer, Christina Evans, Stephen V. J Biol Chem Research Article Self-assembling (glyco)protein surface layers (S-layers) are ubiquitous prokaryotic cell-surface structures involved in structural maintenance, nutrient diffusion, host adhesion, virulence, and other processes, which makes them appealing targets for therapeutics and biotechnological applications as biosensors or drug delivery systems. However, unlocking this potential requires expanding our understanding of S-layer properties, especially the details of surface-attachment. S-layers of Gram-positive bacteria often are attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Cocrystal structures of the SLH domain trimer from the Paenibacillus alvei S-layer protein SpaA (SpaA(SLH)) with synthetic, terminal SCWP disaccharide and trisaccharide analogs, together with isothermal titration calorimetry binding analyses, reveal that while SpaA(SLH) accommodates longer biologically relevant SCWP ligands within both its primary (G2) and secondary (G1) binding sites, the terminal pyruvylated ManNAc moiety serves as the nearly exclusive SCWP anchoring point. Binding is accompanied by displacement of a flexible loop adjacent to the receptor site that enhances the complementarity between protein and ligand, including electrostatic complementarity with the terminal pyruvate moiety. Remarkably, binding of the pyruvylated monosaccharide SCWP fragment alone is sufficient to cause rearrangement of the receptor-binding sites in a manner necessary to accommodate longer SCWP fragments. The observation of multiple conformations in longer oligosaccharides bound to the protein, together with the demonstrated functionality of two of the three SCWP receptor-binding sites, reveals how the SpaA(SLH)-SCWP interaction has evolved to accommodate longer SCWP ligands and alleviate the strain inherent to bacterial S-layer adhesion during growth and division. American Society for Biochemistry and Molecular Biology 2022-02-18 /pmc/articles/PMC8942822/ /pubmed/35189140 http://dx.doi.org/10.1016/j.jbc.2022.101745 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Legg, Max S.G.
Hager-Mair, Fiona F.
Krauter, Simon
Gagnon, Susannah M.L.
Lòpez-Guzmán, Arturo
Lim, Charlie
Blaukopf, Markus
Kosma, Paul
Schäffer, Christina
Evans, Stephen V.
The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue
title The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue
title_full The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue
title_fullStr The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue
title_full_unstemmed The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue
title_short The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue
title_sort s-layer homology domains of paenibacillus alvei surface protein spaa bind to cell wall polysaccharide through the terminal monosaccharide residue
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942822/
https://www.ncbi.nlm.nih.gov/pubmed/35189140
http://dx.doi.org/10.1016/j.jbc.2022.101745
work_keys_str_mv AT leggmaxsg theslayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT hagermairfionaf theslayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT krautersimon theslayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT gagnonsusannahml theslayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT lopezguzmanarturo theslayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT limcharlie theslayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT blaukopfmarkus theslayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT kosmapaul theslayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT schafferchristina theslayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT evansstephenv theslayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT leggmaxsg slayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT hagermairfionaf slayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT krautersimon slayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT gagnonsusannahml slayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT lopezguzmanarturo slayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT limcharlie slayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT blaukopfmarkus slayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT kosmapaul slayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT schafferchristina slayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue
AT evansstephenv slayerhomologydomainsofpaenibacillusalveisurfaceproteinspaabindtocellwallpolysaccharidethroughtheterminalmonosaccharideresidue