Cargando…

Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture

The polysaccharide capsule of fungal pathogen Cryptococcus neoformans is a critical virulence factor that has historically evaded complete characterization. Cryptococcal polysaccharides are known to either remain attached to the cell as capsular polysaccharides (CPSs) or to be shed into the extracel...

Descripción completa

Detalles Bibliográficos
Autores principales: Wear, Maggie P., Jacobs, Ella, Wang, Siqing, McConnell, Scott A., Bowen, Anthony, Strother, Camilla, Cordero, Radames J.B., Crawford, Conor J., Casadevall, Arturo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942833/
https://www.ncbi.nlm.nih.gov/pubmed/35218774
http://dx.doi.org/10.1016/j.jbc.2022.101769
_version_ 1784673392787456000
author Wear, Maggie P.
Jacobs, Ella
Wang, Siqing
McConnell, Scott A.
Bowen, Anthony
Strother, Camilla
Cordero, Radames J.B.
Crawford, Conor J.
Casadevall, Arturo
author_facet Wear, Maggie P.
Jacobs, Ella
Wang, Siqing
McConnell, Scott A.
Bowen, Anthony
Strother, Camilla
Cordero, Radames J.B.
Crawford, Conor J.
Casadevall, Arturo
author_sort Wear, Maggie P.
collection PubMed
description The polysaccharide capsule of fungal pathogen Cryptococcus neoformans is a critical virulence factor that has historically evaded complete characterization. Cryptococcal polysaccharides are known to either remain attached to the cell as capsular polysaccharides (CPSs) or to be shed into the extracellular space as exopolysaccharides (EPSs). While many studies have examined the properties of EPS, far less is known about CPS. In this work, we detail the development of new physical and enzymatic methods for the isolation of CPS which can be used to explore the architecture of the capsule and isolated capsular material. We show that sonication or Glucanex enzyme cocktail digestion yields soluble CPS preparations, while use of a French pressure cell press or Glucanex digestion followed by cell disruption removed the capsule and produced cell wall–associated polysaccharide aggregates that we call “capsule ghosts”, implying an inherent organization that allows the CPS to exist independent of the cell wall surface. Since sonication and Glucanex digestion were noncytotoxic, it was also possible to observe the cryptococcal cells rebuilding their capsule, revealing the presence of reducing end glycans throughout the capsule. Finally, analysis of dimethyl sulfoxide-extracted and sonicated CPS preparations revealed the conservation of previously identified glucuronoxylomannan motifs only in the sonicated CPS. Together, these observations provide new insights into capsule architecture and synthesis, consistent with a model in which the capsule is assembled from the cell wall outward using smaller polymers, which are then compiled into larger ones.
format Online
Article
Text
id pubmed-8942833
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-89428332022-03-31 Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture Wear, Maggie P. Jacobs, Ella Wang, Siqing McConnell, Scott A. Bowen, Anthony Strother, Camilla Cordero, Radames J.B. Crawford, Conor J. Casadevall, Arturo J Biol Chem Research Article The polysaccharide capsule of fungal pathogen Cryptococcus neoformans is a critical virulence factor that has historically evaded complete characterization. Cryptococcal polysaccharides are known to either remain attached to the cell as capsular polysaccharides (CPSs) or to be shed into the extracellular space as exopolysaccharides (EPSs). While many studies have examined the properties of EPS, far less is known about CPS. In this work, we detail the development of new physical and enzymatic methods for the isolation of CPS which can be used to explore the architecture of the capsule and isolated capsular material. We show that sonication or Glucanex enzyme cocktail digestion yields soluble CPS preparations, while use of a French pressure cell press or Glucanex digestion followed by cell disruption removed the capsule and produced cell wall–associated polysaccharide aggregates that we call “capsule ghosts”, implying an inherent organization that allows the CPS to exist independent of the cell wall surface. Since sonication and Glucanex digestion were noncytotoxic, it was also possible to observe the cryptococcal cells rebuilding their capsule, revealing the presence of reducing end glycans throughout the capsule. Finally, analysis of dimethyl sulfoxide-extracted and sonicated CPS preparations revealed the conservation of previously identified glucuronoxylomannan motifs only in the sonicated CPS. Together, these observations provide new insights into capsule architecture and synthesis, consistent with a model in which the capsule is assembled from the cell wall outward using smaller polymers, which are then compiled into larger ones. American Society for Biochemistry and Molecular Biology 2022-02-24 /pmc/articles/PMC8942833/ /pubmed/35218774 http://dx.doi.org/10.1016/j.jbc.2022.101769 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Wear, Maggie P.
Jacobs, Ella
Wang, Siqing
McConnell, Scott A.
Bowen, Anthony
Strother, Camilla
Cordero, Radames J.B.
Crawford, Conor J.
Casadevall, Arturo
Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture
title Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture
title_full Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture
title_fullStr Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture
title_full_unstemmed Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture
title_short Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture
title_sort cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942833/
https://www.ncbi.nlm.nih.gov/pubmed/35218774
http://dx.doi.org/10.1016/j.jbc.2022.101769
work_keys_str_mv AT wearmaggiep cryptococcusneoformanscapsuleregrowthexperimentsrevealdynamicsofenlargementandarchitecture
AT jacobsella cryptococcusneoformanscapsuleregrowthexperimentsrevealdynamicsofenlargementandarchitecture
AT wangsiqing cryptococcusneoformanscapsuleregrowthexperimentsrevealdynamicsofenlargementandarchitecture
AT mcconnellscotta cryptococcusneoformanscapsuleregrowthexperimentsrevealdynamicsofenlargementandarchitecture
AT bowenanthony cryptococcusneoformanscapsuleregrowthexperimentsrevealdynamicsofenlargementandarchitecture
AT strothercamilla cryptococcusneoformanscapsuleregrowthexperimentsrevealdynamicsofenlargementandarchitecture
AT corderoradamesjb cryptococcusneoformanscapsuleregrowthexperimentsrevealdynamicsofenlargementandarchitecture
AT crawfordconorj cryptococcusneoformanscapsuleregrowthexperimentsrevealdynamicsofenlargementandarchitecture
AT casadevallarturo cryptococcusneoformanscapsuleregrowthexperimentsrevealdynamicsofenlargementandarchitecture