Cargando…
The vibration study of a sandwich conical shell with a saturated FGP core
This paper is provided to analyze the free vibration of a sandwich truncated conical shell with a saturated functionally graded porous (FGP) core and two same homogenous isotropic face sheets. The mechanical behavior of the saturated FGP is assumed based on Biot’s theory, the shell is modeled via th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942987/ https://www.ncbi.nlm.nih.gov/pubmed/35322107 http://dx.doi.org/10.1038/s41598-022-09043-w |
_version_ | 1784673421368492032 |
---|---|
author | Nasr Esfahani, Mohsen Hashemian, Mohammad Aghadavoudi, Farshid |
author_facet | Nasr Esfahani, Mohsen Hashemian, Mohammad Aghadavoudi, Farshid |
author_sort | Nasr Esfahani, Mohsen |
collection | PubMed |
description | This paper is provided to analyze the free vibration of a sandwich truncated conical shell with a saturated functionally graded porous (FGP) core and two same homogenous isotropic face sheets. The mechanical behavior of the saturated FGP is assumed based on Biot’s theory, the shell is modeled via the first-order shear deformation theory (FSDT), and the governing equations and boundary conditions are derived utilizing Hamilton’s principle. Three different porosity distribution patterns are studied including one homogenous uniform distribution pattern and two non-homogenous symmetric ones. The porosity parameters in mentioned distribution patterns are regulated to make them the same in the shell’s mass. The equations of motion are solved exactly in the circumferential direction via proper sinusoidal and cosinusoidal functions, and a numerical solution is provided in the meridional direction utilizing the differential quadrature method (DQM). The precision of the model is approved and the influences of several parameters such as circumferential wave number, the thickness of the FGP core, porosity parameter, porosity distribution pattern, the compressibility of the pore fluid, and boundary conditions on the shell’s natural frequencies are investigated. It is shown that the highest natural frequencies usually can be achieved when the larger pores are located close to the shell’s middle surface and in each vibrational mode, there is a special value of the porosity parameter which leads to the lowest natural frequencies. It is deduced that in most cases, natural frequencies decrease by increasing the thickness of the FGP core. In addition, reducing the compressibility of the porefluid a small growth in the natural frequencies can be seen. |
format | Online Article Text |
id | pubmed-8942987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-89429872022-03-28 The vibration study of a sandwich conical shell with a saturated FGP core Nasr Esfahani, Mohsen Hashemian, Mohammad Aghadavoudi, Farshid Sci Rep Article This paper is provided to analyze the free vibration of a sandwich truncated conical shell with a saturated functionally graded porous (FGP) core and two same homogenous isotropic face sheets. The mechanical behavior of the saturated FGP is assumed based on Biot’s theory, the shell is modeled via the first-order shear deformation theory (FSDT), and the governing equations and boundary conditions are derived utilizing Hamilton’s principle. Three different porosity distribution patterns are studied including one homogenous uniform distribution pattern and two non-homogenous symmetric ones. The porosity parameters in mentioned distribution patterns are regulated to make them the same in the shell’s mass. The equations of motion are solved exactly in the circumferential direction via proper sinusoidal and cosinusoidal functions, and a numerical solution is provided in the meridional direction utilizing the differential quadrature method (DQM). The precision of the model is approved and the influences of several parameters such as circumferential wave number, the thickness of the FGP core, porosity parameter, porosity distribution pattern, the compressibility of the pore fluid, and boundary conditions on the shell’s natural frequencies are investigated. It is shown that the highest natural frequencies usually can be achieved when the larger pores are located close to the shell’s middle surface and in each vibrational mode, there is a special value of the porosity parameter which leads to the lowest natural frequencies. It is deduced that in most cases, natural frequencies decrease by increasing the thickness of the FGP core. In addition, reducing the compressibility of the porefluid a small growth in the natural frequencies can be seen. Nature Publishing Group UK 2022-03-23 /pmc/articles/PMC8942987/ /pubmed/35322107 http://dx.doi.org/10.1038/s41598-022-09043-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Nasr Esfahani, Mohsen Hashemian, Mohammad Aghadavoudi, Farshid The vibration study of a sandwich conical shell with a saturated FGP core |
title | The vibration study of a sandwich conical shell with a saturated FGP core |
title_full | The vibration study of a sandwich conical shell with a saturated FGP core |
title_fullStr | The vibration study of a sandwich conical shell with a saturated FGP core |
title_full_unstemmed | The vibration study of a sandwich conical shell with a saturated FGP core |
title_short | The vibration study of a sandwich conical shell with a saturated FGP core |
title_sort | vibration study of a sandwich conical shell with a saturated fgp core |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942987/ https://www.ncbi.nlm.nih.gov/pubmed/35322107 http://dx.doi.org/10.1038/s41598-022-09043-w |
work_keys_str_mv | AT nasresfahanimohsen thevibrationstudyofasandwichconicalshellwithasaturatedfgpcore AT hashemianmohammad thevibrationstudyofasandwichconicalshellwithasaturatedfgpcore AT aghadavoudifarshid thevibrationstudyofasandwichconicalshellwithasaturatedfgpcore AT nasresfahanimohsen vibrationstudyofasandwichconicalshellwithasaturatedfgpcore AT hashemianmohammad vibrationstudyofasandwichconicalshellwithasaturatedfgpcore AT aghadavoudifarshid vibrationstudyofasandwichconicalshellwithasaturatedfgpcore |