Cargando…
A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis
Image-based cell phenotyping relies on quantitative measurements as encoded representations of cells; however, defining suitable representations that capture complex imaging features is challenged by the lack of robust methods to segment cells, identify subcellular compartments, and extract relevant...
Autores principales: | Ternes, Luke, Dane, Mark, Gross, Sean, Labrie, Marilyne, Mills, Gordon, Gray, Joe, Heiser, Laura, Chang, Young Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943013/ https://www.ncbi.nlm.nih.gov/pubmed/35322205 http://dx.doi.org/10.1038/s42003-022-03218-x |
Ejemplares similares
-
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
Benchmarking variational AutoEncoders on cancer transcriptomics data
por: Eltager, Mostafa, et al.
Publicado: (2023) -
A Transformer-Based Hierarchical Variational AutoEncoder Combined Hidden Markov Model for Long Text Generation
por: Zhao, Kun, et al.
Publicado: (2021) -
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation
por: Semenova, Elizaveta, et al.
Publicado: (2022)