Cargando…
Automated quality assessment of large digitised histology cohorts by artificial intelligence
Research using whole slide images (WSIs) of histopathology slides has increased exponentially over recent years. Glass slides from retrospective cohorts, some with patient follow-up data are digitised for the development and validation of artificial intelligence (AI) tools. Such resources, therefore...
Autores principales: | Haghighat, Maryam, Browning, Lisa, Sirinukunwattana, Korsuk, Malacrino, Stefano, Khalid Alham, Nasullah, Colling, Richard, Cui, Ying, Rakha, Emad, Hamdy, Freddie C., Verrill, Clare, Rittscher, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943120/ https://www.ncbi.nlm.nih.gov/pubmed/35322056 http://dx.doi.org/10.1038/s41598-022-08351-5 |
Ejemplares similares
-
Artificial intelligence for advance requesting of immunohistochemistry in diagnostically uncertain prostate biopsies
por: Chatrian, Andrea, et al.
Publicado: (2021) -
The Potential of Artificial Intelligence to Detect Lymphovascular Invasion in Testicular Cancer
por: Ghosh, Abhisek, et al.
Publicado: (2021) -
Precision immunoprofiling by image analysis and artificial intelligence
por: Koelzer, Viktor H., et al.
Publicado: (2018) -
Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID-19 and future crises: the PathLAKE consortium perspective
por: Browning, Lisa, et al.
Publicado: (2021) -
Role of digital pathology in diagnostic histopathology in the response to COVID-19: results from a survey of experience in a UK tertiary referral hospital
por: Browning, Lisa, et al.
Publicado: (2021)