Cargando…
A practical guide to applying machine learning to infant EEG data
Electroencephalography (EEG) has been widely adopted by the developmental cognitive neuroscience community, but the application of machine learning (ML) in this domain lags behind adult EEG studies. Applying ML to infant data is particularly challenging due to the low number of trials, low signal-to...
Autores principales: | Ng, Bernard, Reh, Rebecca K., Mostafavi, Sara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943418/ https://www.ncbi.nlm.nih.gov/pubmed/35334336 http://dx.doi.org/10.1016/j.dcn.2022.101096 |
Ejemplares similares
-
Applied Machine Learning for Health and Fitness: A Practical Guide to Machine Learning with Deep Vision, Sensors and IoT
por: Ashley, Kevin
Publicado: (2020) -
Applying machine learning EEG signal classification to emotion‑related brain anticipatory activity
por: Bilucaglia, Marco, et al.
Publicado: (2021) -
Time-resolved multivariate pattern analysis of infant EEG data: A practical tutorial
por: Ashton, Kira, et al.
Publicado: (2022) -
Assessment and Optimization of Explainable Machine Learning Models Applied to Transcriptomic Data
por: Zhao, Yongbing, et al.
Publicado: (2022) -
Human-machine interfaces based on EMG and EEG applied to robotic systems
por: Ferreira, Andre, et al.
Publicado: (2008)