Cargando…
Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate
The design of molecular receptors that bind and sense anions in biologically relevant aqueous solutions is a key challenge in supramolecular chemistry. The recognition of inorganic phosphate is particularly challenging because of its high hydration energy and pH dependent speciation. Adenosine monop...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943852/ https://www.ncbi.nlm.nih.gov/pubmed/35432862 http://dx.doi.org/10.1039/d1sc05377a |
_version_ | 1784673599295062016 |
---|---|
author | Bodman, Samantha E. Breen, Colum Kirkland, Sam Wheeler, Simon Robertson, Erin Plasser, Felix Butler, Stephen J. |
author_facet | Bodman, Samantha E. Breen, Colum Kirkland, Sam Wheeler, Simon Robertson, Erin Plasser, Felix Butler, Stephen J. |
author_sort | Bodman, Samantha E. |
collection | PubMed |
description | The design of molecular receptors that bind and sense anions in biologically relevant aqueous solutions is a key challenge in supramolecular chemistry. The recognition of inorganic phosphate is particularly challenging because of its high hydration energy and pH dependent speciation. Adenosine monophosphate (AMP) represents a valuable but elusive target for supramolecular detection because of its structural similarity to the more negatively charged anions, ATP and ADP. We report two new macrocyclic Eu(iii) receptors capable of selectively sensing inorganic phosphate and AMP in water. The receptors contain a sterically demanding 8-(benzyloxy)quinoline pendant arm that coordinates to the metal centre, creating a binding pocket suitable for phosphate and AMP, whilst excluding potentially interfering chelating anions, in particular ATP, bicarbonate and lactate. The sensing selectivity of our Eu(iii) receptors follows the order AMP > ADP > ATP, which represents a reversal of the order of selectivity observed for most reported nucleoside phosphate receptors. We have exploited the unique host–guest induced changes in emission intensity and lifetime for the detection of inorganic phosphate in human serum samples, and for monitoring the enzymatic production of AMP in real-time. |
format | Online Article Text |
id | pubmed-8943852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-89438522022-04-14 Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate Bodman, Samantha E. Breen, Colum Kirkland, Sam Wheeler, Simon Robertson, Erin Plasser, Felix Butler, Stephen J. Chem Sci Chemistry The design of molecular receptors that bind and sense anions in biologically relevant aqueous solutions is a key challenge in supramolecular chemistry. The recognition of inorganic phosphate is particularly challenging because of its high hydration energy and pH dependent speciation. Adenosine monophosphate (AMP) represents a valuable but elusive target for supramolecular detection because of its structural similarity to the more negatively charged anions, ATP and ADP. We report two new macrocyclic Eu(iii) receptors capable of selectively sensing inorganic phosphate and AMP in water. The receptors contain a sterically demanding 8-(benzyloxy)quinoline pendant arm that coordinates to the metal centre, creating a binding pocket suitable for phosphate and AMP, whilst excluding potentially interfering chelating anions, in particular ATP, bicarbonate and lactate. The sensing selectivity of our Eu(iii) receptors follows the order AMP > ADP > ATP, which represents a reversal of the order of selectivity observed for most reported nucleoside phosphate receptors. We have exploited the unique host–guest induced changes in emission intensity and lifetime for the detection of inorganic phosphate in human serum samples, and for monitoring the enzymatic production of AMP in real-time. The Royal Society of Chemistry 2022-02-11 /pmc/articles/PMC8943852/ /pubmed/35432862 http://dx.doi.org/10.1039/d1sc05377a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Bodman, Samantha E. Breen, Colum Kirkland, Sam Wheeler, Simon Robertson, Erin Plasser, Felix Butler, Stephen J. Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate |
title | Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate |
title_full | Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate |
title_fullStr | Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate |
title_full_unstemmed | Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate |
title_short | Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate |
title_sort | sterically demanding macrocyclic eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943852/ https://www.ncbi.nlm.nih.gov/pubmed/35432862 http://dx.doi.org/10.1039/d1sc05377a |
work_keys_str_mv | AT bodmansamanthae stericallydemandingmacrocycliceuiiicomplexesforselectiverecognitionofphosphateandrealtimemonitoringofenzymaticallygeneratedadenosinemonophosphate AT breencolum stericallydemandingmacrocycliceuiiicomplexesforselectiverecognitionofphosphateandrealtimemonitoringofenzymaticallygeneratedadenosinemonophosphate AT kirklandsam stericallydemandingmacrocycliceuiiicomplexesforselectiverecognitionofphosphateandrealtimemonitoringofenzymaticallygeneratedadenosinemonophosphate AT wheelersimon stericallydemandingmacrocycliceuiiicomplexesforselectiverecognitionofphosphateandrealtimemonitoringofenzymaticallygeneratedadenosinemonophosphate AT robertsonerin stericallydemandingmacrocycliceuiiicomplexesforselectiverecognitionofphosphateandrealtimemonitoringofenzymaticallygeneratedadenosinemonophosphate AT plasserfelix stericallydemandingmacrocycliceuiiicomplexesforselectiverecognitionofphosphateandrealtimemonitoringofenzymaticallygeneratedadenosinemonophosphate AT butlerstephenj stericallydemandingmacrocycliceuiiicomplexesforselectiverecognitionofphosphateandrealtimemonitoringofenzymaticallygeneratedadenosinemonophosphate |