Cargando…
Parallel sequence tagging for concept recognition
BACKGROUND: Named Entity Recognition (NER) and Normalisation (NEN) are core components of any text-mining system for biomedical texts. In a traditional concept-recognition pipeline, these tasks are combined in a serial way, which is inherently prone to error propagation from NER to NEN. We propose a...
Autores principales: | Furrer, Lenz, Cornelius, Joseph, Rinaldi, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943923/ https://www.ncbi.nlm.nih.gov/pubmed/35331131 http://dx.doi.org/10.1186/s12859-021-04511-y |
Ejemplares similares
-
OGER++: hybrid multi-type entity recognition
por: Furrer, Lenz, et al.
Publicado: (2019) -
Entity recognition in the biomedical domain using a hybrid approach
por: Basaldella, Marco, et al.
Publicado: (2017) -
PARPST: a PARallel algorithm to find peptide sequence tags
por: Brunetti, Sara, et al.
Publicado: (2008) -
Hierarchical molecular tagging to resolve long continuous sequences by massively parallel sequencing
por: Lundin, Sverker, et al.
Publicado: (2013) -
Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags
por: Hohenlohe, Paul A., et al.
Publicado: (2010)