Cargando…
Isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer
Epithelial-mesenchymal transition (EMT) is a driving force in promoting malignant cancer, including initiation, growth, and metastasis. EMT is a dynamic process that can undergo a mesenchymal-epithelial transition (MET) and partial transitions between both phenotypes, termed epithelial-mesenchymal p...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944243/ https://www.ncbi.nlm.nih.gov/pubmed/33742123 http://dx.doi.org/10.1038/s41388-021-01728-2 |
_version_ | 1784673672597864448 |
---|---|
author | Esquer, Hector Zhou, Qiong Nemkov, Travis Abraham, Adedoyin D. Rinaldetti, Sébastien Chen, Yu-Chi Zhang, Xiaohu Orman, Michael V. D’Alessandro, Angelo Ferrer, Marc Messersmith, Wells A. LaBarbera, Daniel V. |
author_facet | Esquer, Hector Zhou, Qiong Nemkov, Travis Abraham, Adedoyin D. Rinaldetti, Sébastien Chen, Yu-Chi Zhang, Xiaohu Orman, Michael V. D’Alessandro, Angelo Ferrer, Marc Messersmith, Wells A. LaBarbera, Daniel V. |
author_sort | Esquer, Hector |
collection | PubMed |
description | Epithelial-mesenchymal transition (EMT) is a driving force in promoting malignant cancer, including initiation, growth, and metastasis. EMT is a dynamic process that can undergo a mesenchymal-epithelial transition (MET) and partial transitions between both phenotypes, termed epithelial-mesenchymal plasticity (EMP). In cancer, the acquisition of EMP results in a spectrum of phenotypes, promoting tumor cell heterogeneity and resistance to standard of care therapy. Here we describe a real-time fluorescent dual-reporter for vimentin and E-cadherin, biomarkers of the mesenchymal and epithelial cell phenotypes, respectively. Stable dual-reporter cell lines generated from colorectal (SW620), lung (A549), and breast (MDA-MB-231) cancer demonstrate a spectrum of EMT cell phenotypes. We used the dual-reporter to isolate the quasi epithelial, epithelial/mesenchymal, and mesenchymal phenotypes. Although EMT is a dynamic process, these isolated quasi-EMT-phenotypes remain stable to spontaneous EMP in the absence of stimuli and during prolonged cell culture. However, the quasi-EMT phenotypes can readily be induced to undergo EMT or MET with growth factors or small molecules. Moreover, isolated EMT phenotypes display different tumorigenic properties and are morphologically and metabolically distinct. 3D high-content screening of ~23,000 compounds using dual-reporter mesenchymal SW620 tumor organoids identified small molecule probes that modulate EMT, and a subset of probes that effectively induced MET. The tools, probes, and models described herein provide a coherent mechanistic understanding of mesenchymal cell plasticity. Future applications utilizing this technology and probes are expected to advance our understanding of EMT and studies aimed at therapeutic strategies targeting EMT. |
format | Online Article Text |
id | pubmed-8944243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-89442432022-03-24 Isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer Esquer, Hector Zhou, Qiong Nemkov, Travis Abraham, Adedoyin D. Rinaldetti, Sébastien Chen, Yu-Chi Zhang, Xiaohu Orman, Michael V. D’Alessandro, Angelo Ferrer, Marc Messersmith, Wells A. LaBarbera, Daniel V. Oncogene Article Epithelial-mesenchymal transition (EMT) is a driving force in promoting malignant cancer, including initiation, growth, and metastasis. EMT is a dynamic process that can undergo a mesenchymal-epithelial transition (MET) and partial transitions between both phenotypes, termed epithelial-mesenchymal plasticity (EMP). In cancer, the acquisition of EMP results in a spectrum of phenotypes, promoting tumor cell heterogeneity and resistance to standard of care therapy. Here we describe a real-time fluorescent dual-reporter for vimentin and E-cadherin, biomarkers of the mesenchymal and epithelial cell phenotypes, respectively. Stable dual-reporter cell lines generated from colorectal (SW620), lung (A549), and breast (MDA-MB-231) cancer demonstrate a spectrum of EMT cell phenotypes. We used the dual-reporter to isolate the quasi epithelial, epithelial/mesenchymal, and mesenchymal phenotypes. Although EMT is a dynamic process, these isolated quasi-EMT-phenotypes remain stable to spontaneous EMP in the absence of stimuli and during prolonged cell culture. However, the quasi-EMT phenotypes can readily be induced to undergo EMT or MET with growth factors or small molecules. Moreover, isolated EMT phenotypes display different tumorigenic properties and are morphologically and metabolically distinct. 3D high-content screening of ~23,000 compounds using dual-reporter mesenchymal SW620 tumor organoids identified small molecule probes that modulate EMT, and a subset of probes that effectively induced MET. The tools, probes, and models described herein provide a coherent mechanistic understanding of mesenchymal cell plasticity. Future applications utilizing this technology and probes are expected to advance our understanding of EMT and studies aimed at therapeutic strategies targeting EMT. 2021-04 2021-03-19 /pmc/articles/PMC8944243/ /pubmed/33742123 http://dx.doi.org/10.1038/s41388-021-01728-2 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Esquer, Hector Zhou, Qiong Nemkov, Travis Abraham, Adedoyin D. Rinaldetti, Sébastien Chen, Yu-Chi Zhang, Xiaohu Orman, Michael V. D’Alessandro, Angelo Ferrer, Marc Messersmith, Wells A. LaBarbera, Daniel V. Isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer |
title | Isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer |
title_full | Isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer |
title_fullStr | Isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer |
title_full_unstemmed | Isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer |
title_short | Isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer |
title_sort | isolating and targeting the real-time plasticity and malignant properties of epithelial-mesenchymal transition in cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944243/ https://www.ncbi.nlm.nih.gov/pubmed/33742123 http://dx.doi.org/10.1038/s41388-021-01728-2 |
work_keys_str_mv | AT esquerhector isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT zhouqiong isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT nemkovtravis isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT abrahamadedoyind isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT rinaldettisebastien isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT chenyuchi isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT zhangxiaohu isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT ormanmichaelv isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT dalessandroangelo isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT ferrermarc isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT messersmithwellsa isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer AT labarberadanielv isolatingandtargetingtherealtimeplasticityandmalignantpropertiesofepithelialmesenchymaltransitionincancer |