Cargando…
State of biodiversity documentation in the Philippines: Metadata gaps, taxonomic biases, and spatial biases in the DNA barcode data of animal and plant taxa in the context of species occurrence data
Anthropogenic changes in the natural environment have led to alarming rates of biodiversity loss, resulting in a more urgent need for conservation. Although there is an increasing cognizance of the importance of incorporating biodiversity data into conservation, the accuracy of the inferences genera...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944339/ https://www.ncbi.nlm.nih.gov/pubmed/35341040 http://dx.doi.org/10.7717/peerj.13146 |
Sumario: | Anthropogenic changes in the natural environment have led to alarming rates of biodiversity loss, resulting in a more urgent need for conservation. Although there is an increasing cognizance of the importance of incorporating biodiversity data into conservation, the accuracy of the inferences generated from these records can be highly impacted by gaps and biases in the data. Because of the Philippines’ status as a biodiversity hotspot, the assessment of potential gaps and biases in biodiversity documentation in the country can be a critical step in the identification of priority research areas for conservation applications. In this study, we systematically assessed biodiversity data on animal and plant taxa found in the Philippines by examining the extent of metadata gaps, taxonomic biases, and spatial biases in DNA barcode data while using species occurrence data as a backdrop of the ‘Philippines’ biodiversity. These barcode and species occurrence datasets were obtained from public databases, namely: GenBank, Barcode of Life Data System and Global Biodiversity Information Facility. We found that much of the barcode data had missing information on either records and publishing, geolocation, or taxonomic metadata, which consequently, can limit the usability of barcode data for further analyses. We also observed that the amount of barcode data can be directly associated with the amount of species occurrence data available for a particular taxonomic group and location–highlighting the potential sampling biases in the barcode data. While the majority of barcode data came from foreign institutions, there has been an increase in local efforts in recent decades. However, much of the contribution to biodiversity documentation only come from institutions based in Luzon. |
---|