Cargando…

Influence of Sub-Inhibitory Dosage of Cefotaxime on Multidrug Resistant Staphylococcus haemolyticus Isolated from Sick Neonatal Care Unit

Staphylococcus haemolyticus has emerged to be a frequently encountered late-onset sepsis pathogen among newborn infants. Critical care of neonates involves substantial usage of antibiotics and these pathogens are often exposed to sub-optimal doses of antibiotics which can augment maintenance of sele...

Descripción completa

Detalles Bibliográficos
Autores principales: Chakraborty, Madhurima, Bardhan, Taniya, Basu, Manjari, Bhattacharjee, Bornali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944431/
https://www.ncbi.nlm.nih.gov/pubmed/35326823
http://dx.doi.org/10.3390/antibiotics11030360
Descripción
Sumario:Staphylococcus haemolyticus has emerged to be a frequently encountered late-onset sepsis pathogen among newborn infants. Critical care of neonates involves substantial usage of antibiotics and these pathogens are often exposed to sub-optimal doses of antibiotics which can augment maintenance of selection determinants and a range of physiological effects, prime among them being biofilm formation. Therefore, in this study, the outcome of a sub-inhibitory dosage of a commonly prescribed third-generation antibiotic, cefotaxime (CTX), on multidrug resistant (MDR) S. haemolyticus, was investigated. A total of 19 CTX-resistant, MDR and 5 CTX-susceptible strains isolated from neonates were included. Biofilm-forming abilities of S. haemolyticus isolates in the presence of sub-optimal CTX (30 μg/mL) were determined by crystal violet assays and extracellular DNA (eDNA) quantitation. CTX was found to significantly enhance biofilm production among the non-susceptible isolates (p-value(Wilcoxintest)—0.000008) with an increase in eDNA levels (p-value(Wilcoxintest)—0.000004). Further, in the absence of antibiotic selection in vitro, populations of MDR isolates, JNM56C1 and JNM60C2 remained antibiotic non-susceptible after >500 generations of growth. These findings demonstrate that sub-optimal concentration of CTX induces biofilm formation and short-term non-exposure to antibiotics does not alter non-susceptibility among S. haemolyticus isolates under the tested conditions.