Cargando…

Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals

The emergence of antimicrobial-resistant bacteria is an enormous challenge to public health. Aeromonas hydrophila and Aeromonas veronii are opportunistic pathogens in fish. They exert tremendous adverse effects on aquaculture production, owing to their acquired antibiotic resistance. A few Clinical...

Descripción completa

Detalles Bibliográficos
Autores principales: Woo, Soo-Ji, Kim, Myoung-Sug, Jeong, Min-Gyeong, Do, Mi-Young, Hwang, Sung-Don, Kim, Woo-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944483/
https://www.ncbi.nlm.nih.gov/pubmed/35326806
http://dx.doi.org/10.3390/antibiotics11030343
Descripción
Sumario:The emergence of antimicrobial-resistant bacteria is an enormous challenge to public health. Aeromonas hydrophila and Aeromonas veronii are opportunistic pathogens in fish. They exert tremendous adverse effects on aquaculture production, owing to their acquired antibiotic resistance. A few Clinical and Laboratory Standards Institute (CLSI) epidemiological cut-off values (ECVs) against Aeromonas spp. are available. We evaluated antimicrobial susceptibility by establishing 8 ECVs using two analytical methods, normalized resistance interpretation and ECOFFinder. We detected antimicrobial resistance genes in two motile Aeromonas spp. isolated from aquatic animals. Results showed that 89.2% of A. hydrophila and 75.8% of A. veronii isolates were non-wild types according to the oxytetracycline ECV(CLSI) and ECV(NRI), respectively. The antimicrobial resistance genes included tetA, tetB, tetD, tetE, cat, floR, qnrA, qnrB, qnrS, strA-strB, and aac(6′)-1b. The most common tet gene in Aeromonas spp. isolates was tetE, followed by tetA. Some strains carried more than one tet gene, with tetA–tetD and tetA–tetE found in A. hydrophila; however, tetB was not detected in any of the strains. Furthermore, 18.6% of A. hydrophila and 24.2% of A. veronii isolates showed presumptive multidrug-resistant phenotypes. The emergence of multidrug resistance among aquatic aeromonads suggests the spread of drug resistance and difficult to treat bacterial infections.