Cargando…

Prevalence and Antibiotic Susceptibility Trends of Selected Enterobacteriaceae, Enterococci, and Candida albicans in the Subgingival Microbiota of German Periodontitis Patients: A Retrospective Surveillance Study

The periodontal microbiota is ecologically diverse and may facilitate colonization by bacteria of enteric origin (Enterobacteriaceae, Enterococci) and co-infections with Candida albicans, possibly producing subgingival biofilms with high antimicrobial tolerance. This retrospective surveillance study...

Descripción completa

Detalles Bibliográficos
Autores principales: Jepsen, Karin, Falk, Wolfgang, Brune, Friederike, Cosgarea, Raluca, Fimmers, Rolf, Bekeredjian-Ding, Isabelle, Jepsen, Søren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944811/
https://www.ncbi.nlm.nih.gov/pubmed/35326848
http://dx.doi.org/10.3390/antibiotics11030385
Descripción
Sumario:The periodontal microbiota is ecologically diverse and may facilitate colonization by bacteria of enteric origin (Enterobacteriaceae, Enterococci) and co-infections with Candida albicans, possibly producing subgingival biofilms with high antimicrobial tolerance. This retrospective surveillance study followed periodontitis-associated superinfection profiles in a large patient sample. From 2008 to 2015, biofilm samples from deep periodontal pockets were collected from a total of 16,612 German adults diagnosed with periodontitis. The presence of selected Enterobacteriaceae, Enterococci, and Candida albicans was confirmed in overnight cultures. Antimicrobial susceptibility of these clinical isolates was tested by disk diffusion with antibiotics routinely used for treatment of oral infections, e.g., amoxicillin (AML), amoxicillin/clavulanic acid (AMC), doxycycline (DO), and ciprofloxacin (CIP). The mean annual prevalence of patients harboring Enterobacteriaceae in periodontal plaques was 11.5% in total and ranged from 2.5% for Enterobacter cloacae to 3.6% for Klebsiella oxytoca, 1.1% for Klebsiella pneumoniae, 2.8% for Serratia marcescens, and 1.5% for Serratia liquefaciens. In comparison, the mean detection rates for microbiota typically found in the oral cavity were higher, e.g., 5.6% for Enterococcus spp. and 21.8% for Candida albicans. Among the Enterobacteriaceae, species harboring intrinsic resistance to AML (Enterobacter spp., Klebsiella spp., Serratia spp.) were predominant. Non-susceptibility to AMC was observed for Serratia spp. and Enterobacter cloacae. By contrast, Enterococcus spp. only showed non-susceptibility to DO and CIP. Trends for increasing resistance were found to AML in Serratia liquefaciens and to DO in Enterococcus spp. Trend analysis showed decreasing resistance to AMC in Serratia liquefaciens and Klebsiella oxytoca; and to DO in Serratia marcescens, liquefaciens, and Enterobacter cloacae. This study confirms the low but consistent presence of Enterobacteriaceae and Enterococci among the subgingival microbiota recovered from periodontitis specimen. Although their pathogenetic role in periodontal lesions remains unclear, their presence in the oral cavity should be recognized as a potential reservoir for development and spread of antibiotic resistance in light of antibiotic usage in oral infections.