Cargando…

Inflammatory Response of Primary Cultured Bovine Mammary Epithelial Cells to Staphylococcus aureus Extracellular Vesicles

SIMPLE SUMMARY: Mastitis, the inflammation of the mammary gland, is one of the most common and costly diseases worldwide, and Staphylococcus aureus (S. aureus) is among the most prevalent microorganisms that cause it. To obtain new insights into S. aureus mammary gland infections, we have isolated S...

Descripción completa

Detalles Bibliográficos
Autores principales: Saenz-de-Juano, Mara D., Silvestrelli, Giulia, Weber, Andres, Röhrig, Christian, Schmelcher, Mathias, Ulbrich, Susanne E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944978/
https://www.ncbi.nlm.nih.gov/pubmed/35336789
http://dx.doi.org/10.3390/biology11030415
Descripción
Sumario:SIMPLE SUMMARY: Mastitis, the inflammation of the mammary gland, is one of the most common and costly diseases worldwide, and Staphylococcus aureus (S. aureus) is among the most prevalent microorganisms that cause it. To obtain new insights into S. aureus mammary gland infections, we have isolated S. aureus extracellular vesicles to challenge in vitro primary bovine mammary epithelial cells. Despite the toxic content of the vesicles, we observed only a minor pro-inflammatory response. The latter can contribute to the explanation of how S. aureus evades mammary epithelial defence mechanisms and successfully colonizes the mammary gland. ABSTRACT: In dairy cows, Staphylococcus aureus (S. aureus) is among the most prevalent microorganisms worldwide, causing mastitis, an inflammation of the mammary gland. Production of extracellular vesicles (EVs) is a common feature of S. aureus strains, which contributes to its pathogenesis by delivering bacterial effector molecules to host cells. In the current study, we evaluated the differences between five S. aureus mastitis isolates regarding their EV production. We found that different mastitis-related S. aureus strains differ in their behaviour of shedding EVs, with M5512VL producing the largest amount of EVs containing alpha-haemolysin, a strong cytotoxic agent. We stimulated primary cultured bovine mammary epithelial cells (pbMECs) with EVs from the S. aureus strain M5512VL. After 24 h of incubation, we observed a moderate increase in gene expression of tumour necrosis factor-alpha (TNF-α) but, surprisingly, a lack of an associated pronounced pro-inflammatory response. Our results contribute to understanding the damaging nature of S. aureus in its capacity to effectively affect mammary epithelial cells.