Cargando…
Machine Learning Approach to Predict the Surface Charge Density of Monodispersed Particles in Gas–Solid Fluidized Beds
[Image: see text] Gas–solid fluidized beds are complex particle systems, and the electrostatic behavior of particles in fluidized beds is even more complex, which is influenced by numerous factors such as particle properties and operating conditions. Current studies focus on the effect of a certain...
Autores principales: | Lu, Junyu, Duan, Chenlong, Zhao, Yuemin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945086/ https://www.ncbi.nlm.nih.gov/pubmed/35356693 http://dx.doi.org/10.1021/acsomega.2c00299 |
Ejemplares similares
-
Studies on Bed Density in a Gas-Vibro Fluidized Bed
for Coal Cleaning
por: Zhou, Chenyang, et al.
Publicado: (2019) -
Theoretical Analysis and Optimization of Fine Lignite
Drying and Separation with a Pulsed Fluidized Bed
por: Sheng, Cheng, et al.
Publicado: (2020) -
Effects of Particle Diameter and Inlet Flow Rate on
Gas–Solid Flow Patterns of Fluidized Bed
por: Zhao, Zhenjiang, et al.
Publicado: (2023) -
Characteristics Analysis of the Blockage Zone in a
Gas–Solid Fluidized Bed
por: Zhang, Guilin, et al.
Publicado: (2022) -
Imaging Method for Measurements of Particle Density and Solid Holdup of Entangled MWCNTs in a Fluidized Bed
por: Lee, Min Ji, et al.
Publicado: (2019)