Cargando…
Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth
Sex pheromone receptors are crucial in insects for mate finding and contribute to species premating isolation. Many pheromone receptors have been functionally characterized, especially in moths, but loss of function studies are rare. Notably, the potential role of pheromone receptors in the developm...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945201/ https://www.ncbi.nlm.nih.gov/pubmed/35327533 http://dx.doi.org/10.3390/biom12030341 |
_version_ | 1784673903189164032 |
---|---|
author | Koutroumpa, Fotini Monsempès, Christelle Anton, Sylvia François, Marie-Christine Montagné, Nicolas Jacquin-Joly, Emmanuelle |
author_facet | Koutroumpa, Fotini Monsempès, Christelle Anton, Sylvia François, Marie-Christine Montagné, Nicolas Jacquin-Joly, Emmanuelle |
author_sort | Koutroumpa, Fotini |
collection | PubMed |
description | Sex pheromone receptors are crucial in insects for mate finding and contribute to species premating isolation. Many pheromone receptors have been functionally characterized, especially in moths, but loss of function studies are rare. Notably, the potential role of pheromone receptors in the development of the macroglomeruli in the antennal lobe (the brain structures processing pheromone signals) is not known. Here, we used CRISPR-Cas9 to knock-out the receptor for the major component of the sex pheromone of the noctuid moth Spodoptera littoralis, and investigated the resulting effects on electrophysiological responses of peripheral pheromone-sensitive neurons and on the structure of the macroglomeruli. We show that the inactivation of the receptor specifically affected the responses of the corresponding antennal neurons did not impact the number of macroglomeruli in the antennal lobe but reduced the size of the macroglomerulus processing input from neurons tuned to the main pheromone component. We suggest that this mutant neuroanatomical phenotype results from a lack of neuronal activity due to the absence of the pheromone receptor and potentially reduced neural connectivity between peripheral and antennal lobe neurons. This is the first evidence of the role of a moth pheromone receptor in macroglomerulus development and extends our knowledge of the different functions odorant receptors can have in insect neurodevelopment. |
format | Online Article Text |
id | pubmed-8945201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89452012022-03-25 Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth Koutroumpa, Fotini Monsempès, Christelle Anton, Sylvia François, Marie-Christine Montagné, Nicolas Jacquin-Joly, Emmanuelle Biomolecules Article Sex pheromone receptors are crucial in insects for mate finding and contribute to species premating isolation. Many pheromone receptors have been functionally characterized, especially in moths, but loss of function studies are rare. Notably, the potential role of pheromone receptors in the development of the macroglomeruli in the antennal lobe (the brain structures processing pheromone signals) is not known. Here, we used CRISPR-Cas9 to knock-out the receptor for the major component of the sex pheromone of the noctuid moth Spodoptera littoralis, and investigated the resulting effects on electrophysiological responses of peripheral pheromone-sensitive neurons and on the structure of the macroglomeruli. We show that the inactivation of the receptor specifically affected the responses of the corresponding antennal neurons did not impact the number of macroglomeruli in the antennal lobe but reduced the size of the macroglomerulus processing input from neurons tuned to the main pheromone component. We suggest that this mutant neuroanatomical phenotype results from a lack of neuronal activity due to the absence of the pheromone receptor and potentially reduced neural connectivity between peripheral and antennal lobe neurons. This is the first evidence of the role of a moth pheromone receptor in macroglomerulus development and extends our knowledge of the different functions odorant receptors can have in insect neurodevelopment. MDPI 2022-02-22 /pmc/articles/PMC8945201/ /pubmed/35327533 http://dx.doi.org/10.3390/biom12030341 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Koutroumpa, Fotini Monsempès, Christelle Anton, Sylvia François, Marie-Christine Montagné, Nicolas Jacquin-Joly, Emmanuelle Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth |
title | Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth |
title_full | Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth |
title_fullStr | Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth |
title_full_unstemmed | Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth |
title_short | Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth |
title_sort | pheromone receptor knock-out affects pheromone detection and brain structure in a moth |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945201/ https://www.ncbi.nlm.nih.gov/pubmed/35327533 http://dx.doi.org/10.3390/biom12030341 |
work_keys_str_mv | AT koutroumpafotini pheromonereceptorknockoutaffectspheromonedetectionandbrainstructureinamoth AT monsempeschristelle pheromonereceptorknockoutaffectspheromonedetectionandbrainstructureinamoth AT antonsylvia pheromonereceptorknockoutaffectspheromonedetectionandbrainstructureinamoth AT francoismariechristine pheromonereceptorknockoutaffectspheromonedetectionandbrainstructureinamoth AT montagnenicolas pheromonereceptorknockoutaffectspheromonedetectionandbrainstructureinamoth AT jacquinjolyemmanuelle pheromonereceptorknockoutaffectspheromonedetectionandbrainstructureinamoth |