Cargando…

An In Vivo Inflammatory Loop Potentiates KRAS Blockade

KRAS (KRAS proto-oncogene, GTPase) inhibitors perform less well than other targeted drugs in vitro and fail clinical trials. To investigate a possible reason for this, we treated human and murine tumor cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isop...

Descripción completa

Detalles Bibliográficos
Autores principales: Arendt, Kristina A. M., Ntaliarda, Giannoula, Armenis, Vasileios, Kati, Danai, Henning, Christin, Giotopoulou, Georgia A., Pepe, Mario A. A., Klotz, Laura V., Lamort, Anne-Sophie, Hatz, Rudolf A., Kobold, Sebastian, Schamberger, Andrea C., Stathopoulos, Georgios T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945202/
https://www.ncbi.nlm.nih.gov/pubmed/35327394
http://dx.doi.org/10.3390/biomedicines10030592
_version_ 1784673903434530816
author Arendt, Kristina A. M.
Ntaliarda, Giannoula
Armenis, Vasileios
Kati, Danai
Henning, Christin
Giotopoulou, Georgia A.
Pepe, Mario A. A.
Klotz, Laura V.
Lamort, Anne-Sophie
Hatz, Rudolf A.
Kobold, Sebastian
Schamberger, Andrea C.
Stathopoulos, Georgios T.
author_facet Arendt, Kristina A. M.
Ntaliarda, Giannoula
Armenis, Vasileios
Kati, Danai
Henning, Christin
Giotopoulou, Georgia A.
Pepe, Mario A. A.
Klotz, Laura V.
Lamort, Anne-Sophie
Hatz, Rudolf A.
Kobold, Sebastian
Schamberger, Andrea C.
Stathopoulos, Georgios T.
author_sort Arendt, Kristina A. M.
collection PubMed
description KRAS (KRAS proto-oncogene, GTPase) inhibitors perform less well than other targeted drugs in vitro and fail clinical trials. To investigate a possible reason for this, we treated human and murine tumor cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isoprenylcysteine carboxylmethyltransferase), and AA12 (targeting KRAS(G12C)), and silenced/overexpressed mutant KRAS using custom-designed vectors. We showed that KRAS-mutant tumor cells exclusively respond to KRAS blockade in vivo, because the oncogene co-opts host myeloid cells via a C-C-motif chemokine ligand 2 (CCL2)/interleukin-1 beta (IL-1β)-mediated signaling loop for sustained tumorigenicity. Indeed, KRAS-mutant tumors did not respond to deltarasin in C-C motif chemokine receptor 2 (Ccr2) and Il1b gene-deficient mice, but were deltarasin-sensitive in wild-type and Ccr2-deficient mice adoptively transplanted with wild-type murine bone marrow. A KRAS-dependent pro-inflammatory transcriptome was prominent in human cancers with high KRAS mutation prevalence and poor predicted survival. Our findings support that in vitro cellular systems are suboptimal for anti-KRAS drug screens, as these drugs function to suppress interleukin-1 receptor 1 (IL1R1) expression and myeloid IL-1β-delivered pro-growth effects in vivo. Moreover, the findings support that IL-1β blockade might be suitable for therapy for KRAS-mutant cancers.
format Online
Article
Text
id pubmed-8945202
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89452022022-03-25 An In Vivo Inflammatory Loop Potentiates KRAS Blockade Arendt, Kristina A. M. Ntaliarda, Giannoula Armenis, Vasileios Kati, Danai Henning, Christin Giotopoulou, Georgia A. Pepe, Mario A. A. Klotz, Laura V. Lamort, Anne-Sophie Hatz, Rudolf A. Kobold, Sebastian Schamberger, Andrea C. Stathopoulos, Georgios T. Biomedicines Article KRAS (KRAS proto-oncogene, GTPase) inhibitors perform less well than other targeted drugs in vitro and fail clinical trials. To investigate a possible reason for this, we treated human and murine tumor cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isoprenylcysteine carboxylmethyltransferase), and AA12 (targeting KRAS(G12C)), and silenced/overexpressed mutant KRAS using custom-designed vectors. We showed that KRAS-mutant tumor cells exclusively respond to KRAS blockade in vivo, because the oncogene co-opts host myeloid cells via a C-C-motif chemokine ligand 2 (CCL2)/interleukin-1 beta (IL-1β)-mediated signaling loop for sustained tumorigenicity. Indeed, KRAS-mutant tumors did not respond to deltarasin in C-C motif chemokine receptor 2 (Ccr2) and Il1b gene-deficient mice, but were deltarasin-sensitive in wild-type and Ccr2-deficient mice adoptively transplanted with wild-type murine bone marrow. A KRAS-dependent pro-inflammatory transcriptome was prominent in human cancers with high KRAS mutation prevalence and poor predicted survival. Our findings support that in vitro cellular systems are suboptimal for anti-KRAS drug screens, as these drugs function to suppress interleukin-1 receptor 1 (IL1R1) expression and myeloid IL-1β-delivered pro-growth effects in vivo. Moreover, the findings support that IL-1β blockade might be suitable for therapy for KRAS-mutant cancers. MDPI 2022-03-03 /pmc/articles/PMC8945202/ /pubmed/35327394 http://dx.doi.org/10.3390/biomedicines10030592 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Arendt, Kristina A. M.
Ntaliarda, Giannoula
Armenis, Vasileios
Kati, Danai
Henning, Christin
Giotopoulou, Georgia A.
Pepe, Mario A. A.
Klotz, Laura V.
Lamort, Anne-Sophie
Hatz, Rudolf A.
Kobold, Sebastian
Schamberger, Andrea C.
Stathopoulos, Georgios T.
An In Vivo Inflammatory Loop Potentiates KRAS Blockade
title An In Vivo Inflammatory Loop Potentiates KRAS Blockade
title_full An In Vivo Inflammatory Loop Potentiates KRAS Blockade
title_fullStr An In Vivo Inflammatory Loop Potentiates KRAS Blockade
title_full_unstemmed An In Vivo Inflammatory Loop Potentiates KRAS Blockade
title_short An In Vivo Inflammatory Loop Potentiates KRAS Blockade
title_sort in vivo inflammatory loop potentiates kras blockade
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945202/
https://www.ncbi.nlm.nih.gov/pubmed/35327394
http://dx.doi.org/10.3390/biomedicines10030592
work_keys_str_mv AT arendtkristinaam aninvivoinflammatorylooppotentiateskrasblockade
AT ntaliardagiannoula aninvivoinflammatorylooppotentiateskrasblockade
AT armenisvasileios aninvivoinflammatorylooppotentiateskrasblockade
AT katidanai aninvivoinflammatorylooppotentiateskrasblockade
AT henningchristin aninvivoinflammatorylooppotentiateskrasblockade
AT giotopoulougeorgiaa aninvivoinflammatorylooppotentiateskrasblockade
AT pepemarioaa aninvivoinflammatorylooppotentiateskrasblockade
AT klotzlaurav aninvivoinflammatorylooppotentiateskrasblockade
AT lamortannesophie aninvivoinflammatorylooppotentiateskrasblockade
AT hatzrudolfa aninvivoinflammatorylooppotentiateskrasblockade
AT koboldsebastian aninvivoinflammatorylooppotentiateskrasblockade
AT schambergerandreac aninvivoinflammatorylooppotentiateskrasblockade
AT stathopoulosgeorgiost aninvivoinflammatorylooppotentiateskrasblockade
AT arendtkristinaam invivoinflammatorylooppotentiateskrasblockade
AT ntaliardagiannoula invivoinflammatorylooppotentiateskrasblockade
AT armenisvasileios invivoinflammatorylooppotentiateskrasblockade
AT katidanai invivoinflammatorylooppotentiateskrasblockade
AT henningchristin invivoinflammatorylooppotentiateskrasblockade
AT giotopoulougeorgiaa invivoinflammatorylooppotentiateskrasblockade
AT pepemarioaa invivoinflammatorylooppotentiateskrasblockade
AT klotzlaurav invivoinflammatorylooppotentiateskrasblockade
AT lamortannesophie invivoinflammatorylooppotentiateskrasblockade
AT hatzrudolfa invivoinflammatorylooppotentiateskrasblockade
AT koboldsebastian invivoinflammatorylooppotentiateskrasblockade
AT schambergerandreac invivoinflammatorylooppotentiateskrasblockade
AT stathopoulosgeorgiost invivoinflammatorylooppotentiateskrasblockade