Cargando…
An In Vivo Inflammatory Loop Potentiates KRAS Blockade
KRAS (KRAS proto-oncogene, GTPase) inhibitors perform less well than other targeted drugs in vitro and fail clinical trials. To investigate a possible reason for this, we treated human and murine tumor cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isop...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945202/ https://www.ncbi.nlm.nih.gov/pubmed/35327394 http://dx.doi.org/10.3390/biomedicines10030592 |
_version_ | 1784673903434530816 |
---|---|
author | Arendt, Kristina A. M. Ntaliarda, Giannoula Armenis, Vasileios Kati, Danai Henning, Christin Giotopoulou, Georgia A. Pepe, Mario A. A. Klotz, Laura V. Lamort, Anne-Sophie Hatz, Rudolf A. Kobold, Sebastian Schamberger, Andrea C. Stathopoulos, Georgios T. |
author_facet | Arendt, Kristina A. M. Ntaliarda, Giannoula Armenis, Vasileios Kati, Danai Henning, Christin Giotopoulou, Georgia A. Pepe, Mario A. A. Klotz, Laura V. Lamort, Anne-Sophie Hatz, Rudolf A. Kobold, Sebastian Schamberger, Andrea C. Stathopoulos, Georgios T. |
author_sort | Arendt, Kristina A. M. |
collection | PubMed |
description | KRAS (KRAS proto-oncogene, GTPase) inhibitors perform less well than other targeted drugs in vitro and fail clinical trials. To investigate a possible reason for this, we treated human and murine tumor cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isoprenylcysteine carboxylmethyltransferase), and AA12 (targeting KRAS(G12C)), and silenced/overexpressed mutant KRAS using custom-designed vectors. We showed that KRAS-mutant tumor cells exclusively respond to KRAS blockade in vivo, because the oncogene co-opts host myeloid cells via a C-C-motif chemokine ligand 2 (CCL2)/interleukin-1 beta (IL-1β)-mediated signaling loop for sustained tumorigenicity. Indeed, KRAS-mutant tumors did not respond to deltarasin in C-C motif chemokine receptor 2 (Ccr2) and Il1b gene-deficient mice, but were deltarasin-sensitive in wild-type and Ccr2-deficient mice adoptively transplanted with wild-type murine bone marrow. A KRAS-dependent pro-inflammatory transcriptome was prominent in human cancers with high KRAS mutation prevalence and poor predicted survival. Our findings support that in vitro cellular systems are suboptimal for anti-KRAS drug screens, as these drugs function to suppress interleukin-1 receptor 1 (IL1R1) expression and myeloid IL-1β-delivered pro-growth effects in vivo. Moreover, the findings support that IL-1β blockade might be suitable for therapy for KRAS-mutant cancers. |
format | Online Article Text |
id | pubmed-8945202 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89452022022-03-25 An In Vivo Inflammatory Loop Potentiates KRAS Blockade Arendt, Kristina A. M. Ntaliarda, Giannoula Armenis, Vasileios Kati, Danai Henning, Christin Giotopoulou, Georgia A. Pepe, Mario A. A. Klotz, Laura V. Lamort, Anne-Sophie Hatz, Rudolf A. Kobold, Sebastian Schamberger, Andrea C. Stathopoulos, Georgios T. Biomedicines Article KRAS (KRAS proto-oncogene, GTPase) inhibitors perform less well than other targeted drugs in vitro and fail clinical trials. To investigate a possible reason for this, we treated human and murine tumor cells with KRAS inhibitors deltarasin (targeting phosphodiesterase-δ), cysmethynil (targeting isoprenylcysteine carboxylmethyltransferase), and AA12 (targeting KRAS(G12C)), and silenced/overexpressed mutant KRAS using custom-designed vectors. We showed that KRAS-mutant tumor cells exclusively respond to KRAS blockade in vivo, because the oncogene co-opts host myeloid cells via a C-C-motif chemokine ligand 2 (CCL2)/interleukin-1 beta (IL-1β)-mediated signaling loop for sustained tumorigenicity. Indeed, KRAS-mutant tumors did not respond to deltarasin in C-C motif chemokine receptor 2 (Ccr2) and Il1b gene-deficient mice, but were deltarasin-sensitive in wild-type and Ccr2-deficient mice adoptively transplanted with wild-type murine bone marrow. A KRAS-dependent pro-inflammatory transcriptome was prominent in human cancers with high KRAS mutation prevalence and poor predicted survival. Our findings support that in vitro cellular systems are suboptimal for anti-KRAS drug screens, as these drugs function to suppress interleukin-1 receptor 1 (IL1R1) expression and myeloid IL-1β-delivered pro-growth effects in vivo. Moreover, the findings support that IL-1β blockade might be suitable for therapy for KRAS-mutant cancers. MDPI 2022-03-03 /pmc/articles/PMC8945202/ /pubmed/35327394 http://dx.doi.org/10.3390/biomedicines10030592 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Arendt, Kristina A. M. Ntaliarda, Giannoula Armenis, Vasileios Kati, Danai Henning, Christin Giotopoulou, Georgia A. Pepe, Mario A. A. Klotz, Laura V. Lamort, Anne-Sophie Hatz, Rudolf A. Kobold, Sebastian Schamberger, Andrea C. Stathopoulos, Georgios T. An In Vivo Inflammatory Loop Potentiates KRAS Blockade |
title | An In Vivo Inflammatory Loop Potentiates KRAS Blockade |
title_full | An In Vivo Inflammatory Loop Potentiates KRAS Blockade |
title_fullStr | An In Vivo Inflammatory Loop Potentiates KRAS Blockade |
title_full_unstemmed | An In Vivo Inflammatory Loop Potentiates KRAS Blockade |
title_short | An In Vivo Inflammatory Loop Potentiates KRAS Blockade |
title_sort | in vivo inflammatory loop potentiates kras blockade |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945202/ https://www.ncbi.nlm.nih.gov/pubmed/35327394 http://dx.doi.org/10.3390/biomedicines10030592 |
work_keys_str_mv | AT arendtkristinaam aninvivoinflammatorylooppotentiateskrasblockade AT ntaliardagiannoula aninvivoinflammatorylooppotentiateskrasblockade AT armenisvasileios aninvivoinflammatorylooppotentiateskrasblockade AT katidanai aninvivoinflammatorylooppotentiateskrasblockade AT henningchristin aninvivoinflammatorylooppotentiateskrasblockade AT giotopoulougeorgiaa aninvivoinflammatorylooppotentiateskrasblockade AT pepemarioaa aninvivoinflammatorylooppotentiateskrasblockade AT klotzlaurav aninvivoinflammatorylooppotentiateskrasblockade AT lamortannesophie aninvivoinflammatorylooppotentiateskrasblockade AT hatzrudolfa aninvivoinflammatorylooppotentiateskrasblockade AT koboldsebastian aninvivoinflammatorylooppotentiateskrasblockade AT schambergerandreac aninvivoinflammatorylooppotentiateskrasblockade AT stathopoulosgeorgiost aninvivoinflammatorylooppotentiateskrasblockade AT arendtkristinaam invivoinflammatorylooppotentiateskrasblockade AT ntaliardagiannoula invivoinflammatorylooppotentiateskrasblockade AT armenisvasileios invivoinflammatorylooppotentiateskrasblockade AT katidanai invivoinflammatorylooppotentiateskrasblockade AT henningchristin invivoinflammatorylooppotentiateskrasblockade AT giotopoulougeorgiaa invivoinflammatorylooppotentiateskrasblockade AT pepemarioaa invivoinflammatorylooppotentiateskrasblockade AT klotzlaurav invivoinflammatorylooppotentiateskrasblockade AT lamortannesophie invivoinflammatorylooppotentiateskrasblockade AT hatzrudolfa invivoinflammatorylooppotentiateskrasblockade AT koboldsebastian invivoinflammatorylooppotentiateskrasblockade AT schambergerandreac invivoinflammatorylooppotentiateskrasblockade AT stathopoulosgeorgiost invivoinflammatorylooppotentiateskrasblockade |