Cargando…
Medical Professional Enhancement Using Explainable Artificial Intelligence in Fetal Cardiac Ultrasound Screening
Diagnostic support tools based on artificial intelligence (AI) have exhibited high performance in various medical fields. However, their clinical application remains challenging because of the lack of explanatory power in AI decisions (black box problem), making it difficult to build trust with medi...
Autores principales: | Sakai, Akira, Komatsu, Masaaki, Komatsu, Reina, Matsuoka, Ryu, Yasutomi, Suguru, Dozen, Ai, Shozu, Kanto, Arakaki, Tatsuya, Machino, Hidenori, Asada, Ken, Kaneko, Syuzo, Sekizawa, Akihiko, Hamamoto, Ryuji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945208/ https://www.ncbi.nlm.nih.gov/pubmed/35327353 http://dx.doi.org/10.3390/biomedicines10030551 |
Ejemplares similares
-
Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos
por: Shozu, Kanto, et al.
Publicado: (2020) -
Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information
por: Dozen, Ai, et al.
Publicado: (2020) -
Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging
por: Komatsu, Masaaki, et al.
Publicado: (2021) -
Tumor Suppressive Role of the PRELP Gene in Ovarian Clear Cell Carcinoma
por: Dozen, Ai, et al.
Publicado: (2022) -
Repression of the PRELP gene is relieved by histone deacetylase inhibitors through acetylation of histone H2B lysine 5 in bladder cancer
por: Shozu, Kanto, et al.
Publicado: (2022)