Cargando…
Proteotranscriptomic Analysis and Toxicity Assay Suggest the Functional Distinction between Venom Gland Chambers in Twin-Spotted Assassin Bug, Platymeris biguttatus
SIMPLE SUMMARY: Assassin bugs are one of the diversified groups of venomous predatory insects. Their venom is secreted from three different lumens of the salivary gland and can lead to paralysis, lethality, and liquidation of the prey, respectively. Nevertheless, most reduviid venom components respo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945326/ https://www.ncbi.nlm.nih.gov/pubmed/35336837 http://dx.doi.org/10.3390/biology11030464 |
_version_ | 1784673931721965568 |
---|---|
author | Gao, Fanding Tian, Li Li, Xinyu Zhang, Yinqiao Wang, Tianfang Ma, Ling Song, Fan Cai, Wanzhi Li, Hu |
author_facet | Gao, Fanding Tian, Li Li, Xinyu Zhang, Yinqiao Wang, Tianfang Ma, Ling Song, Fan Cai, Wanzhi Li, Hu |
author_sort | Gao, Fanding |
collection | PubMed |
description | SIMPLE SUMMARY: Assassin bugs are one of the diversified groups of venomous predatory insects. Their venom is secreted from three different lumens of the salivary gland and can lead to paralysis, lethality, and liquidation of the prey, respectively. Nevertheless, most reduviid venom components responsible for these effects are not clear. In this study, we use transcriptomics and proteomics to determine the effective salivary protein components in the separate lumen of salivary gland from twin-spotted assassin bug Platymeris biguttatus and to conduct toxicological analysis on the function of the salivary gland compartments. Our study sheds light on the functional cooperation between different salivary gland lumens of assassin bugs and will further the understanding of physiological adaptations of venom-based predation and defense in venomous hemipterans. ABSTRACT: Assassin bugs use their salivary venoms for various purposes, including defense, prey paralyzation, and extra-oral digestion, but the mechanisms underlying the functional complexity of the venom remain largely unclear. Since venom glands are composed of several chambers, it is suggested that individual chambers may be specialized to produce chemically distinct venoms to exert different functions. The current study assesses this hypothesis by performing toxicity assays and transcriptomic and proteomic analysis on components from three major venom gland chambers including the anterior main gland (AMG), the posterior main gland (PMG), and the accessory gland (AG) of the assassin bug Platymeris biguttatus. Proteotranscriptomic analysis reveals that AMG and PMG extracts are rich in hemolytic proteins and serine proteases, respectively, whereas transferrin and apolipophorin are dominant in the AG. Toxicity assays reveal that secretions from different gland chambers have distinct effects on the prey, with that from AG compromising prey mobility, that from PMG causing prey death and liquifying the corpse, and that from AMG showing no significant physiological effects. Our study reveals a functional cooperation among venom gland chambers of assassin bugs and provides new insights into physiological adaptations to venom-based predation and defense in venomous predatory bugs. |
format | Online Article Text |
id | pubmed-8945326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89453262022-03-25 Proteotranscriptomic Analysis and Toxicity Assay Suggest the Functional Distinction between Venom Gland Chambers in Twin-Spotted Assassin Bug, Platymeris biguttatus Gao, Fanding Tian, Li Li, Xinyu Zhang, Yinqiao Wang, Tianfang Ma, Ling Song, Fan Cai, Wanzhi Li, Hu Biology (Basel) Article SIMPLE SUMMARY: Assassin bugs are one of the diversified groups of venomous predatory insects. Their venom is secreted from three different lumens of the salivary gland and can lead to paralysis, lethality, and liquidation of the prey, respectively. Nevertheless, most reduviid venom components responsible for these effects are not clear. In this study, we use transcriptomics and proteomics to determine the effective salivary protein components in the separate lumen of salivary gland from twin-spotted assassin bug Platymeris biguttatus and to conduct toxicological analysis on the function of the salivary gland compartments. Our study sheds light on the functional cooperation between different salivary gland lumens of assassin bugs and will further the understanding of physiological adaptations of venom-based predation and defense in venomous hemipterans. ABSTRACT: Assassin bugs use their salivary venoms for various purposes, including defense, prey paralyzation, and extra-oral digestion, but the mechanisms underlying the functional complexity of the venom remain largely unclear. Since venom glands are composed of several chambers, it is suggested that individual chambers may be specialized to produce chemically distinct venoms to exert different functions. The current study assesses this hypothesis by performing toxicity assays and transcriptomic and proteomic analysis on components from three major venom gland chambers including the anterior main gland (AMG), the posterior main gland (PMG), and the accessory gland (AG) of the assassin bug Platymeris biguttatus. Proteotranscriptomic analysis reveals that AMG and PMG extracts are rich in hemolytic proteins and serine proteases, respectively, whereas transferrin and apolipophorin are dominant in the AG. Toxicity assays reveal that secretions from different gland chambers have distinct effects on the prey, with that from AG compromising prey mobility, that from PMG causing prey death and liquifying the corpse, and that from AMG showing no significant physiological effects. Our study reveals a functional cooperation among venom gland chambers of assassin bugs and provides new insights into physiological adaptations to venom-based predation and defense in venomous predatory bugs. MDPI 2022-03-17 /pmc/articles/PMC8945326/ /pubmed/35336837 http://dx.doi.org/10.3390/biology11030464 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gao, Fanding Tian, Li Li, Xinyu Zhang, Yinqiao Wang, Tianfang Ma, Ling Song, Fan Cai, Wanzhi Li, Hu Proteotranscriptomic Analysis and Toxicity Assay Suggest the Functional Distinction between Venom Gland Chambers in Twin-Spotted Assassin Bug, Platymeris biguttatus |
title | Proteotranscriptomic Analysis and Toxicity Assay Suggest the Functional Distinction between Venom Gland Chambers in Twin-Spotted Assassin Bug, Platymeris biguttatus |
title_full | Proteotranscriptomic Analysis and Toxicity Assay Suggest the Functional Distinction between Venom Gland Chambers in Twin-Spotted Assassin Bug, Platymeris biguttatus |
title_fullStr | Proteotranscriptomic Analysis and Toxicity Assay Suggest the Functional Distinction between Venom Gland Chambers in Twin-Spotted Assassin Bug, Platymeris biguttatus |
title_full_unstemmed | Proteotranscriptomic Analysis and Toxicity Assay Suggest the Functional Distinction between Venom Gland Chambers in Twin-Spotted Assassin Bug, Platymeris biguttatus |
title_short | Proteotranscriptomic Analysis and Toxicity Assay Suggest the Functional Distinction between Venom Gland Chambers in Twin-Spotted Assassin Bug, Platymeris biguttatus |
title_sort | proteotranscriptomic analysis and toxicity assay suggest the functional distinction between venom gland chambers in twin-spotted assassin bug, platymeris biguttatus |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945326/ https://www.ncbi.nlm.nih.gov/pubmed/35336837 http://dx.doi.org/10.3390/biology11030464 |
work_keys_str_mv | AT gaofanding proteotranscriptomicanalysisandtoxicityassaysuggestthefunctionaldistinctionbetweenvenomglandchambersintwinspottedassassinbugplatymerisbiguttatus AT tianli proteotranscriptomicanalysisandtoxicityassaysuggestthefunctionaldistinctionbetweenvenomglandchambersintwinspottedassassinbugplatymerisbiguttatus AT lixinyu proteotranscriptomicanalysisandtoxicityassaysuggestthefunctionaldistinctionbetweenvenomglandchambersintwinspottedassassinbugplatymerisbiguttatus AT zhangyinqiao proteotranscriptomicanalysisandtoxicityassaysuggestthefunctionaldistinctionbetweenvenomglandchambersintwinspottedassassinbugplatymerisbiguttatus AT wangtianfang proteotranscriptomicanalysisandtoxicityassaysuggestthefunctionaldistinctionbetweenvenomglandchambersintwinspottedassassinbugplatymerisbiguttatus AT maling proteotranscriptomicanalysisandtoxicityassaysuggestthefunctionaldistinctionbetweenvenomglandchambersintwinspottedassassinbugplatymerisbiguttatus AT songfan proteotranscriptomicanalysisandtoxicityassaysuggestthefunctionaldistinctionbetweenvenomglandchambersintwinspottedassassinbugplatymerisbiguttatus AT caiwanzhi proteotranscriptomicanalysisandtoxicityassaysuggestthefunctionaldistinctionbetweenvenomglandchambersintwinspottedassassinbugplatymerisbiguttatus AT lihu proteotranscriptomicanalysisandtoxicityassaysuggestthefunctionaldistinctionbetweenvenomglandchambersintwinspottedassassinbugplatymerisbiguttatus |