Cargando…
Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images
We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested in this work include logistic regression, linear discriminant analysis, k-nearest neighbors classifier, decision tree classifier and Gaussian...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945332/ https://www.ncbi.nlm.nih.gov/pubmed/35324786 http://dx.doi.org/10.3390/bioengineering9030097 |
_version_ | 1784673933191020544 |
---|---|
author | Bechelli, Solene Delhommelle, Jerome |
author_facet | Bechelli, Solene Delhommelle, Jerome |
author_sort | Bechelli, Solene |
collection | PubMed |
description | We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested in this work include logistic regression, linear discriminant analysis, k-nearest neighbors classifier, decision tree classifier and Gaussian naive Bayes, while deep learning (DL) models employed are either based on a custom Convolutional Neural Network model, or leverage transfer learning via the use of pre-trained models (VGG16, Xception and ResNet50). We find that DL models, with accuracies up to 0.88, all outperform ML models. ML models exhibit accuracies below 0.72, which can be increased to up to 0.75 with ensemble learning. To further assess the performance of DL models, we test them on a larger and more imbalanced dataset. Metrics, such as the F-score and accuracy, indicate that, after fine-tuning, pre-trained models perform extremely well for skin tumor classification. This is most notably the case for VGG16, which exhibits an F-score of 0.88 and an accuracy of 0.88 on the smaller database, and metrics of 0.70 and 0.88, respectively, on the larger database. |
format | Online Article Text |
id | pubmed-8945332 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89453322022-03-25 Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images Bechelli, Solene Delhommelle, Jerome Bioengineering (Basel) Article We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested in this work include logistic regression, linear discriminant analysis, k-nearest neighbors classifier, decision tree classifier and Gaussian naive Bayes, while deep learning (DL) models employed are either based on a custom Convolutional Neural Network model, or leverage transfer learning via the use of pre-trained models (VGG16, Xception and ResNet50). We find that DL models, with accuracies up to 0.88, all outperform ML models. ML models exhibit accuracies below 0.72, which can be increased to up to 0.75 with ensemble learning. To further assess the performance of DL models, we test them on a larger and more imbalanced dataset. Metrics, such as the F-score and accuracy, indicate that, after fine-tuning, pre-trained models perform extremely well for skin tumor classification. This is most notably the case for VGG16, which exhibits an F-score of 0.88 and an accuracy of 0.88 on the smaller database, and metrics of 0.70 and 0.88, respectively, on the larger database. MDPI 2022-02-27 /pmc/articles/PMC8945332/ /pubmed/35324786 http://dx.doi.org/10.3390/bioengineering9030097 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bechelli, Solene Delhommelle, Jerome Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images |
title | Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images |
title_full | Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images |
title_fullStr | Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images |
title_full_unstemmed | Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images |
title_short | Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images |
title_sort | machine learning and deep learning algorithms for skin cancer classification from dermoscopic images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945332/ https://www.ncbi.nlm.nih.gov/pubmed/35324786 http://dx.doi.org/10.3390/bioengineering9030097 |
work_keys_str_mv | AT bechellisolene machinelearninganddeeplearningalgorithmsforskincancerclassificationfromdermoscopicimages AT delhommellejerome machinelearninganddeeplearningalgorithmsforskincancerclassificationfromdermoscopicimages |