Cargando…
Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way?
One of the main challenges in traumatic brain injury (TBI) patients is to achieve an early and definite prognosis. Despite the recent development of algorithms based on artificial intelligence for the identification of these prognostic factors relevant for clinical practice, the literature lacks a r...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945356/ https://www.ncbi.nlm.nih.gov/pubmed/35327488 http://dx.doi.org/10.3390/biomedicines10030686 |
_version_ | 1784673939229769728 |
---|---|
author | Bruschetta, Roberta Tartarisco, Gennaro Lucca, Lucia Francesca Leto, Elio Ursino, Maria Tonin, Paolo Pioggia, Giovanni Cerasa, Antonio |
author_facet | Bruschetta, Roberta Tartarisco, Gennaro Lucca, Lucia Francesca Leto, Elio Ursino, Maria Tonin, Paolo Pioggia, Giovanni Cerasa, Antonio |
author_sort | Bruschetta, Roberta |
collection | PubMed |
description | One of the main challenges in traumatic brain injury (TBI) patients is to achieve an early and definite prognosis. Despite the recent development of algorithms based on artificial intelligence for the identification of these prognostic factors relevant for clinical practice, the literature lacks a rigorous comparison among classical regression and machine learning (ML) models. This study aims at providing this comparison on a sample of TBI patients evaluated at baseline (T0), after 3 months from the event (T1), and at discharge (T2). A Classical Linear Regression Model (LM) was compared with independent performances of Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naïve Bayes (NB) and Decision Tree (DT) algorithms, together with an ensemble ML approach. The accuracy was similar among LM and ML algorithms on the analyzed sample when two classes of outcome (Positive vs. Negative) approach was used, whereas the NB algorithm showed the worst performance. This study highlights the utility of comparing traditional regression modeling to ML, particularly when using a small number of reliable predictor variables after TBI. The dataset of clinical data used to train ML algorithms will be publicly available to other researchers for future comparisons. |
format | Online Article Text |
id | pubmed-8945356 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89453562022-03-25 Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way? Bruschetta, Roberta Tartarisco, Gennaro Lucca, Lucia Francesca Leto, Elio Ursino, Maria Tonin, Paolo Pioggia, Giovanni Cerasa, Antonio Biomedicines Article One of the main challenges in traumatic brain injury (TBI) patients is to achieve an early and definite prognosis. Despite the recent development of algorithms based on artificial intelligence for the identification of these prognostic factors relevant for clinical practice, the literature lacks a rigorous comparison among classical regression and machine learning (ML) models. This study aims at providing this comparison on a sample of TBI patients evaluated at baseline (T0), after 3 months from the event (T1), and at discharge (T2). A Classical Linear Regression Model (LM) was compared with independent performances of Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naïve Bayes (NB) and Decision Tree (DT) algorithms, together with an ensemble ML approach. The accuracy was similar among LM and ML algorithms on the analyzed sample when two classes of outcome (Positive vs. Negative) approach was used, whereas the NB algorithm showed the worst performance. This study highlights the utility of comparing traditional regression modeling to ML, particularly when using a small number of reliable predictor variables after TBI. The dataset of clinical data used to train ML algorithms will be publicly available to other researchers for future comparisons. MDPI 2022-03-16 /pmc/articles/PMC8945356/ /pubmed/35327488 http://dx.doi.org/10.3390/biomedicines10030686 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bruschetta, Roberta Tartarisco, Gennaro Lucca, Lucia Francesca Leto, Elio Ursino, Maria Tonin, Paolo Pioggia, Giovanni Cerasa, Antonio Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way? |
title | Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way? |
title_full | Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way? |
title_fullStr | Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way? |
title_full_unstemmed | Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way? |
title_short | Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way? |
title_sort | predicting outcome of traumatic brain injury: is machine learning the best way? |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945356/ https://www.ncbi.nlm.nih.gov/pubmed/35327488 http://dx.doi.org/10.3390/biomedicines10030686 |
work_keys_str_mv | AT bruschettaroberta predictingoutcomeoftraumaticbraininjuryismachinelearningthebestway AT tartariscogennaro predictingoutcomeoftraumaticbraininjuryismachinelearningthebestway AT luccaluciafrancesca predictingoutcomeoftraumaticbraininjuryismachinelearningthebestway AT letoelio predictingoutcomeoftraumaticbraininjuryismachinelearningthebestway AT ursinomaria predictingoutcomeoftraumaticbraininjuryismachinelearningthebestway AT toninpaolo predictingoutcomeoftraumaticbraininjuryismachinelearningthebestway AT pioggiagiovanni predictingoutcomeoftraumaticbraininjuryismachinelearningthebestway AT cerasaantonio predictingoutcomeoftraumaticbraininjuryismachinelearningthebestway |