Cargando…
Langmuir-Based Modeling Produces Steady Two-Dimensional Simulations of Capacitive Deionization via Relaxed Adsorption-Flow Coupling
[Image: see text] The growing world population creates an ever-increasing demand for fresh drinkable water, and many researchers have discovered the emerging capacitive deionization (CDI) technique to be highly promising for desalination. Traditional modeling of CDI has focused on charge storage in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945368/ https://www.ncbi.nlm.nih.gov/pubmed/35257585 http://dx.doi.org/10.1021/acs.langmuir.1c02806 |
_version_ | 1784673942134325248 |
---|---|
author | Nordstrand, Johan Dutta, Joydeep |
author_facet | Nordstrand, Johan Dutta, Joydeep |
author_sort | Nordstrand, Johan |
collection | PubMed |
description | [Image: see text] The growing world population creates an ever-increasing demand for fresh drinkable water, and many researchers have discovered the emerging capacitive deionization (CDI) technique to be highly promising for desalination. Traditional modeling of CDI has focused on charge storage in electrical double layers, but recent studies have presented a dynamic Langmuir (DL) approach as a simple and stable alternative. We here demonstrate, for the first time, that a Langmuir-based approach can simulate CDI in multiple dimensions. This provides a new perspective of different physical pictures that could be used to describe the detailed CDI processes. As CDI emerges, effective modeling of large-scale and pilot CDI modules is becoming increasingly important, but such a modeling could also be especially complex. Leveraging the stability of the DL model, we propose an alternative fundamental approach based on relaxed adsorption-flow computations that can dissolve these complexity barriers. Literature data extensively validate the findings, which show how the Langmuir-based approach can simulate and predict how key changes in operational and structural conditions affect the CDI performance. Crucially, the method is tractable for simple simulations of large-scale and structurally complex systems. Put together, this work presents new avenues for approaching the challenges in modeling CDI. |
format | Online Article Text |
id | pubmed-8945368 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89453682022-03-28 Langmuir-Based Modeling Produces Steady Two-Dimensional Simulations of Capacitive Deionization via Relaxed Adsorption-Flow Coupling Nordstrand, Johan Dutta, Joydeep Langmuir [Image: see text] The growing world population creates an ever-increasing demand for fresh drinkable water, and many researchers have discovered the emerging capacitive deionization (CDI) technique to be highly promising for desalination. Traditional modeling of CDI has focused on charge storage in electrical double layers, but recent studies have presented a dynamic Langmuir (DL) approach as a simple and stable alternative. We here demonstrate, for the first time, that a Langmuir-based approach can simulate CDI in multiple dimensions. This provides a new perspective of different physical pictures that could be used to describe the detailed CDI processes. As CDI emerges, effective modeling of large-scale and pilot CDI modules is becoming increasingly important, but such a modeling could also be especially complex. Leveraging the stability of the DL model, we propose an alternative fundamental approach based on relaxed adsorption-flow computations that can dissolve these complexity barriers. Literature data extensively validate the findings, which show how the Langmuir-based approach can simulate and predict how key changes in operational and structural conditions affect the CDI performance. Crucially, the method is tractable for simple simulations of large-scale and structurally complex systems. Put together, this work presents new avenues for approaching the challenges in modeling CDI. American Chemical Society 2022-03-08 2022-03-22 /pmc/articles/PMC8945368/ /pubmed/35257585 http://dx.doi.org/10.1021/acs.langmuir.1c02806 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Nordstrand, Johan Dutta, Joydeep Langmuir-Based Modeling Produces Steady Two-Dimensional Simulations of Capacitive Deionization via Relaxed Adsorption-Flow Coupling |
title | Langmuir-Based Modeling Produces Steady Two-Dimensional
Simulations of Capacitive Deionization via Relaxed Adsorption-Flow
Coupling |
title_full | Langmuir-Based Modeling Produces Steady Two-Dimensional
Simulations of Capacitive Deionization via Relaxed Adsorption-Flow
Coupling |
title_fullStr | Langmuir-Based Modeling Produces Steady Two-Dimensional
Simulations of Capacitive Deionization via Relaxed Adsorption-Flow
Coupling |
title_full_unstemmed | Langmuir-Based Modeling Produces Steady Two-Dimensional
Simulations of Capacitive Deionization via Relaxed Adsorption-Flow
Coupling |
title_short | Langmuir-Based Modeling Produces Steady Two-Dimensional
Simulations of Capacitive Deionization via Relaxed Adsorption-Flow
Coupling |
title_sort | langmuir-based modeling produces steady two-dimensional
simulations of capacitive deionization via relaxed adsorption-flow
coupling |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945368/ https://www.ncbi.nlm.nih.gov/pubmed/35257585 http://dx.doi.org/10.1021/acs.langmuir.1c02806 |
work_keys_str_mv | AT nordstrandjohan langmuirbasedmodelingproducessteadytwodimensionalsimulationsofcapacitivedeionizationviarelaxedadsorptionflowcoupling AT duttajoydeep langmuirbasedmodelingproducessteadytwodimensionalsimulationsofcapacitivedeionizationviarelaxedadsorptionflowcoupling |