Cargando…

Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition

Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation (OxPhos) for survival, and they continually adapt to fluctuations in nutrient and oxygen availability in the bone marrow (BM) microenvironment. We investigated how the BM microenvironment affects the response to OxP...

Descripción completa

Detalles Bibliográficos
Autores principales: Saito, Kaori, Zhang, Qi, Yang, Haeun, Yamatani, Kotoko, Ai, Tomohiko, Ruvolo, Vivian, Baran, Natalia, Cai, Tianyu, Ma, Helen, Jacamo, Rodrigo, Kuruvilla, Vinitha, Imoto, Junichi, Kinjo, Sonoko, Ikeo, Kazuho, Moriya, Kaori, Suzuki, Koya, Miida, Takashi, Kim, Yong-Mi, Vellano, Christopher P., Andreeff, Michael, Marszalek, Joseph R., Tabe, Yoko, Konopleva, Marina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Hematology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945617/
https://www.ncbi.nlm.nih.gov/pubmed/34507353
http://dx.doi.org/10.1182/bloodadvances.2020003661
_version_ 1784673996647694336
author Saito, Kaori
Zhang, Qi
Yang, Haeun
Yamatani, Kotoko
Ai, Tomohiko
Ruvolo, Vivian
Baran, Natalia
Cai, Tianyu
Ma, Helen
Jacamo, Rodrigo
Kuruvilla, Vinitha
Imoto, Junichi
Kinjo, Sonoko
Ikeo, Kazuho
Moriya, Kaori
Suzuki, Koya
Miida, Takashi
Kim, Yong-Mi
Vellano, Christopher P.
Andreeff, Michael
Marszalek, Joseph R.
Tabe, Yoko
Konopleva, Marina
author_facet Saito, Kaori
Zhang, Qi
Yang, Haeun
Yamatani, Kotoko
Ai, Tomohiko
Ruvolo, Vivian
Baran, Natalia
Cai, Tianyu
Ma, Helen
Jacamo, Rodrigo
Kuruvilla, Vinitha
Imoto, Junichi
Kinjo, Sonoko
Ikeo, Kazuho
Moriya, Kaori
Suzuki, Koya
Miida, Takashi
Kim, Yong-Mi
Vellano, Christopher P.
Andreeff, Michael
Marszalek, Joseph R.
Tabe, Yoko
Konopleva, Marina
author_sort Saito, Kaori
collection PubMed
description Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation (OxPhos) for survival, and they continually adapt to fluctuations in nutrient and oxygen availability in the bone marrow (BM) microenvironment. We investigated how the BM microenvironment affects the response to OxPhos inhibition in AML by using a novel complex I OxPhos inhibitor, IACS-010759. Cellular adhesion, growth, and apoptosis assays, along with measurements of expression of mitochondrial DNA and generation of mitochondrial reactive oxygen species indicated that direct interactions with BM stromal cells triggered compensatory activation of mitochondrial respiration and resistance to OxPhos inhibition in AML cells. Mechanistically, inhibition of OxPhos induced transfer of mitochondria derived from mesenchymal stem cells (MSCs) to AML cells via tunneling nanotubes under direct-contact coculture conditions. Inhibition of OxPhos also induced mitochondrial fission and increased functional mitochondria and mitophagy in AML cells. Mitochondrial fission is known to enhance cell migration, so we used electron microscopy to observe mitochondrial transport to the leading edge of protrusions of AML cells migrating toward MSCs. We further demonstrated that cytarabine, a commonly used antileukemia agent, increased mitochondrial transfer of MSCs to AML cells triggered by OxPhos inhibition. Our findings indicate an important role of exogenous mitochondrial trafficking from BM stromal cells to AML cells as well as endogenous mitochondrial fission and mitophagy in the compensatory adaptation of leukemia cells to energetic stress in the BM microenvironment.
format Online
Article
Text
id pubmed-8945617
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society of Hematology
record_format MEDLINE/PubMed
spelling pubmed-89456172022-03-29 Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition Saito, Kaori Zhang, Qi Yang, Haeun Yamatani, Kotoko Ai, Tomohiko Ruvolo, Vivian Baran, Natalia Cai, Tianyu Ma, Helen Jacamo, Rodrigo Kuruvilla, Vinitha Imoto, Junichi Kinjo, Sonoko Ikeo, Kazuho Moriya, Kaori Suzuki, Koya Miida, Takashi Kim, Yong-Mi Vellano, Christopher P. Andreeff, Michael Marszalek, Joseph R. Tabe, Yoko Konopleva, Marina Blood Adv Myeloid Neoplasia Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation (OxPhos) for survival, and they continually adapt to fluctuations in nutrient and oxygen availability in the bone marrow (BM) microenvironment. We investigated how the BM microenvironment affects the response to OxPhos inhibition in AML by using a novel complex I OxPhos inhibitor, IACS-010759. Cellular adhesion, growth, and apoptosis assays, along with measurements of expression of mitochondrial DNA and generation of mitochondrial reactive oxygen species indicated that direct interactions with BM stromal cells triggered compensatory activation of mitochondrial respiration and resistance to OxPhos inhibition in AML cells. Mechanistically, inhibition of OxPhos induced transfer of mitochondria derived from mesenchymal stem cells (MSCs) to AML cells via tunneling nanotubes under direct-contact coculture conditions. Inhibition of OxPhos also induced mitochondrial fission and increased functional mitochondria and mitophagy in AML cells. Mitochondrial fission is known to enhance cell migration, so we used electron microscopy to observe mitochondrial transport to the leading edge of protrusions of AML cells migrating toward MSCs. We further demonstrated that cytarabine, a commonly used antileukemia agent, increased mitochondrial transfer of MSCs to AML cells triggered by OxPhos inhibition. Our findings indicate an important role of exogenous mitochondrial trafficking from BM stromal cells to AML cells as well as endogenous mitochondrial fission and mitophagy in the compensatory adaptation of leukemia cells to energetic stress in the BM microenvironment. American Society of Hematology 2021-10-25 /pmc/articles/PMC8945617/ /pubmed/34507353 http://dx.doi.org/10.1182/bloodadvances.2020003661 Text en © 2021 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.
spellingShingle Myeloid Neoplasia
Saito, Kaori
Zhang, Qi
Yang, Haeun
Yamatani, Kotoko
Ai, Tomohiko
Ruvolo, Vivian
Baran, Natalia
Cai, Tianyu
Ma, Helen
Jacamo, Rodrigo
Kuruvilla, Vinitha
Imoto, Junichi
Kinjo, Sonoko
Ikeo, Kazuho
Moriya, Kaori
Suzuki, Koya
Miida, Takashi
Kim, Yong-Mi
Vellano, Christopher P.
Andreeff, Michael
Marszalek, Joseph R.
Tabe, Yoko
Konopleva, Marina
Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition
title Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition
title_full Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition
title_fullStr Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition
title_full_unstemmed Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition
title_short Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition
title_sort exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate aml resistance to oxphos inhibition
topic Myeloid Neoplasia
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945617/
https://www.ncbi.nlm.nih.gov/pubmed/34507353
http://dx.doi.org/10.1182/bloodadvances.2020003661
work_keys_str_mv AT saitokaori exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT zhangqi exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT yanghaeun exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT yamatanikotoko exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT aitomohiko exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT ruvolovivian exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT barannatalia exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT caitianyu exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT mahelen exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT jacamorodrigo exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT kuruvillavinitha exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT imotojunichi exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT kinjosonoko exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT ikeokazuho exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT moriyakaori exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT suzukikoya exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT miidatakashi exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT kimyongmi exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT vellanochristopherp exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT andreeffmichael exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT marszalekjosephr exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT tabeyoko exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition
AT konoplevamarina exogenousmitochondrialtransferandendogenousmitochondrialfissionfacilitateamlresistancetooxphosinhibition