Cargando…
Abnormalities of bone marrow B cells and plasma cells in primary immune thrombocytopenia
Primary immune thrombocytopenia (ITP) is an autoantibody-mediated hemorrhagic disorder in which B cells play an essential role. Previous studies have focused on peripheral blood (PB), but B cells in bone marrow (BM) have not been well characterized. We aimed to explore the profile of B-cell subsets...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Hematology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945629/ https://www.ncbi.nlm.nih.gov/pubmed/34507351 http://dx.doi.org/10.1182/bloodadvances.2020003860 |
Sumario: | Primary immune thrombocytopenia (ITP) is an autoantibody-mediated hemorrhagic disorder in which B cells play an essential role. Previous studies have focused on peripheral blood (PB), but B cells in bone marrow (BM) have not been well characterized. We aimed to explore the profile of B-cell subsets and their cytokine environments in the BM of patients with ITP to further clarify the pathogenesis of the disease. B-cell subpopulations and their cytokine/chemokine receptors were detected by using flow cytometry. Plasma concentrations of cytokines/chemokines were measured by using enzyme-linked immunosorbent assay. Messenger RNA levels of B cell–related transcription factors were determined by using quantitative polymerase chain reaction. Regulatory B cell (Breg) function was assessed by quantifying their inhibitory effects on monocytes and T cells in vitro. Decreased proportions of total B cells, naive B cells, and defective Bregs were observed in patients with ITP compared with healthy controls (HCs), whereas an elevated frequency of long-lived plasma cells was found in BM of autoantibody-positive patients. No statistical difference was observed in plasmablasts or in short-lived plasma cells between patients with ITP and HCs. The immunosuppressive capacity of BM Bregs from patients with ITP was considerably weaker than HCs. An in vivo study using an active ITP murine model revealed that Breg transfusion could significantly alleviate thrombocytopenia. Moreover, overactivation of CXCL13-CXCR5 and BAFF/APRIL systems were found in ITP patient BM. Taken together, B-cell subsets in BM were skewed toward a proinflammatory profile in patients with ITP, suggesting the involvement of dysregulated BM B cells in the development of the disease. |
---|