Cargando…

First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers

The goal of the study was to determine the early diagnostical potential of cardiovascular disease-associated microRNAs for prediction of small-for-gestational-age (SGA) and fetal growth restriction (FGR) without preeclampsia (PE). The whole peripheral venous blood samples were collected within 10 to...

Descripción completa

Detalles Bibliográficos
Autores principales: Hromadnikova, Ilona, Kotlabova, Katerina, Krofta, Ladislav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945808/
https://www.ncbi.nlm.nih.gov/pubmed/35327520
http://dx.doi.org/10.3390/biomedicines10030718
Descripción
Sumario:The goal of the study was to determine the early diagnostical potential of cardiovascular disease-associated microRNAs for prediction of small-for-gestational-age (SGA) and fetal growth restriction (FGR) without preeclampsia (PE). The whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation from singleton Caucasian pregnancies within the period November 2012 to March 2020. The case-control retrospective study, nested in a cohort, involved all pregnancies diagnosed with SGA (n = 37) or FGR (n = 82) without PE and 80 appropriate-for-gestational age (AGA) pregnancies selected with regard to equality of sample storage time. Gene expression of 29 cardiovascular disease-associated microRNAs was assessed using real-time RT-PCR. Upregulation of miR-16-5p, miR-20a-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, and miR-195-5p was observed in SGA or FGR pregnancies at 10.0% false positive rate (FPR). Upregulation of miR-1-3p, miR-20b-5p, miR-126-3p, miR-130b-3p, and miR-499a-5p was observed in SGA pregnancies only at 10.0% FPR. Upregulation of miR-145-5p, miR-342-3p, and miR-574-3p was detected in FGR pregnancies at 10.0% FPR. The combination of four microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-146a-5p, and miR-181a-5p) was able to identify 75.68% SGA pregnancies at 10.0% FPR in early stages of gestation. The detection rate of SGA pregnancies without PE increased 4.67-fold (75.68% vs. 16.22%) when compared with the routine first-trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation. The combination of seven microRNA biomarkers (miR-16-5p, miR-20a-5p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-342-3p, and miR-574-3p) was able to identify 42.68% FGR pregnancies at 10.0% FPR in early stages of gestation. The detection rate of FGR pregnancies without PE increased 1.52-fold (42.68% vs. 28.05%) when compared with the routine first-trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation. Cardiovascular disease-associated microRNAs represent promising early biomarkers with very suitable predictive potential for SGA or FGR without PE to be implemented into the routine screening programs.