Cargando…
Gold-Modified Molecularly Imprinted N-Methacryloyl-(l)-phenylalanine-containing Electrodes for Electrochemical Detection of Dopamine
A molecularly imprinted polymer-based pencil graphite electrode (MIP PGE) sensor, modified with gold nanoparticles, was utilized for the detection of dopamine in the presence of other biochemical compounds using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), depending on its stron...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945848/ https://www.ncbi.nlm.nih.gov/pubmed/35324776 http://dx.doi.org/10.3390/bioengineering9030087 |
_version_ | 1784674051963224064 |
---|---|
author | Abu Shama, Nemah Aşır, Süleyman Ozsoz, Mehmet Göktürk, Ilgım Türkmen, Deniz Yılmaz, Fatma Denizli, Adil |
author_facet | Abu Shama, Nemah Aşır, Süleyman Ozsoz, Mehmet Göktürk, Ilgım Türkmen, Deniz Yılmaz, Fatma Denizli, Adil |
author_sort | Abu Shama, Nemah |
collection | PubMed |
description | A molecularly imprinted polymer-based pencil graphite electrode (MIP PGE) sensor, modified with gold nanoparticles, was utilized for the detection of dopamine in the presence of other biochemical compounds using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), depending on its strong electroactivity function. The pulse voltammetry methods recorded the highest response. In addition to the high oxidation rate of DA and the other biomolecule interferences available in the sample matrix used, which cause overlapping voltammograms, we aimed to differentiate them in a highly sensitive limit of detection range. The calibration curves for DA were obtained using the CV and DPV over the concentration range of 0.395–3.96 nM in 0.1 M phosphate buffer solution (PBS) at pH 7.4 with a correlation coefficient of 0.996 and a detection limit of 0.193 nM. The electrochemical technique was employed to detect DA molecules quantitatively in human blood plasma selected as real samples without applying any pre-treatment processes. MIP electrodes proved their ability to detect DA with high selectivity, even with epinephrine and norepinephrine competitor molecules and interferences, such as ascorbic acid (AA). The high level of recognition achieved by molecularly imprinted polymers (MIPs) is essential for many biological and pharmaceutical studies. |
format | Online Article Text |
id | pubmed-8945848 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89458482022-03-25 Gold-Modified Molecularly Imprinted N-Methacryloyl-(l)-phenylalanine-containing Electrodes for Electrochemical Detection of Dopamine Abu Shama, Nemah Aşır, Süleyman Ozsoz, Mehmet Göktürk, Ilgım Türkmen, Deniz Yılmaz, Fatma Denizli, Adil Bioengineering (Basel) Article A molecularly imprinted polymer-based pencil graphite electrode (MIP PGE) sensor, modified with gold nanoparticles, was utilized for the detection of dopamine in the presence of other biochemical compounds using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), depending on its strong electroactivity function. The pulse voltammetry methods recorded the highest response. In addition to the high oxidation rate of DA and the other biomolecule interferences available in the sample matrix used, which cause overlapping voltammograms, we aimed to differentiate them in a highly sensitive limit of detection range. The calibration curves for DA were obtained using the CV and DPV over the concentration range of 0.395–3.96 nM in 0.1 M phosphate buffer solution (PBS) at pH 7.4 with a correlation coefficient of 0.996 and a detection limit of 0.193 nM. The electrochemical technique was employed to detect DA molecules quantitatively in human blood plasma selected as real samples without applying any pre-treatment processes. MIP electrodes proved their ability to detect DA with high selectivity, even with epinephrine and norepinephrine competitor molecules and interferences, such as ascorbic acid (AA). The high level of recognition achieved by molecularly imprinted polymers (MIPs) is essential for many biological and pharmaceutical studies. MDPI 2022-02-22 /pmc/articles/PMC8945848/ /pubmed/35324776 http://dx.doi.org/10.3390/bioengineering9030087 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abu Shama, Nemah Aşır, Süleyman Ozsoz, Mehmet Göktürk, Ilgım Türkmen, Deniz Yılmaz, Fatma Denizli, Adil Gold-Modified Molecularly Imprinted N-Methacryloyl-(l)-phenylalanine-containing Electrodes for Electrochemical Detection of Dopamine |
title | Gold-Modified Molecularly Imprinted N-Methacryloyl-(l)-phenylalanine-containing Electrodes for Electrochemical Detection of Dopamine |
title_full | Gold-Modified Molecularly Imprinted N-Methacryloyl-(l)-phenylalanine-containing Electrodes for Electrochemical Detection of Dopamine |
title_fullStr | Gold-Modified Molecularly Imprinted N-Methacryloyl-(l)-phenylalanine-containing Electrodes for Electrochemical Detection of Dopamine |
title_full_unstemmed | Gold-Modified Molecularly Imprinted N-Methacryloyl-(l)-phenylalanine-containing Electrodes for Electrochemical Detection of Dopamine |
title_short | Gold-Modified Molecularly Imprinted N-Methacryloyl-(l)-phenylalanine-containing Electrodes for Electrochemical Detection of Dopamine |
title_sort | gold-modified molecularly imprinted n-methacryloyl-(l)-phenylalanine-containing electrodes for electrochemical detection of dopamine |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945848/ https://www.ncbi.nlm.nih.gov/pubmed/35324776 http://dx.doi.org/10.3390/bioengineering9030087 |
work_keys_str_mv | AT abushamanemah goldmodifiedmolecularlyimprintednmethacryloyllphenylalaninecontainingelectrodesforelectrochemicaldetectionofdopamine AT asırsuleyman goldmodifiedmolecularlyimprintednmethacryloyllphenylalaninecontainingelectrodesforelectrochemicaldetectionofdopamine AT ozsozmehmet goldmodifiedmolecularlyimprintednmethacryloyllphenylalaninecontainingelectrodesforelectrochemicaldetectionofdopamine AT gokturkilgım goldmodifiedmolecularlyimprintednmethacryloyllphenylalaninecontainingelectrodesforelectrochemicaldetectionofdopamine AT turkmendeniz goldmodifiedmolecularlyimprintednmethacryloyllphenylalaninecontainingelectrodesforelectrochemicaldetectionofdopamine AT yılmazfatma goldmodifiedmolecularlyimprintednmethacryloyllphenylalaninecontainingelectrodesforelectrochemicaldetectionofdopamine AT denizliadil goldmodifiedmolecularlyimprintednmethacryloyllphenylalaninecontainingelectrodesforelectrochemicaldetectionofdopamine |