Cargando…
Efficient Radiomics-Based Classification of Multi-Parametric MR Images to Identify Volumetric Habitats and Signatures in Glioblastoma: A Machine Learning Approach
SIMPLE SUMMARY: Glioblastomas carry a poor prognosis and usually presents with heterogeneous regions in the brain tumor. Multi-parametric MR images can show morphological characteristics. Radiomics features refer to the extraction of a large number of quantitative measurements that describe the geom...
Autores principales: | Chiu, Fang-Ying, Yen, Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945893/ https://www.ncbi.nlm.nih.gov/pubmed/35326626 http://dx.doi.org/10.3390/cancers14061475 |
Ejemplares similares
-
Radiomic Analysis of Multi-parametric MR Images (MRI) for Classification of Parotid Tumors
por: Fathi Kazerooni, Anahita, et al.
Publicado: (2022) -
Machine Learning-Based Analysis of Magnetic Resonance Radiomics for the Classification of Gliosarcoma and Glioblastoma
por: Qian, Zenghui, et al.
Publicado: (2021) -
Machine Learning-Based Analysis of MR Multiparametric Radiomics for the Subtype Classification of Breast Cancer
por: Xie, Tianwen, et al.
Publicado: (2019) -
Multi-Habitat Radiomics Unravels Distinct Phenotypic Subtypes of Glioblastoma with Clinical and Genomic Significance
por: Choi, Seung Won, et al.
Publicado: (2020) -
A Multi-parametric MRI-Based Radiomics Signature and a Practical ML Model for Stratifying Glioblastoma Patients Based on Survival Toward Precision Oncology
por: Osman, Alexander F. I.
Publicado: (2019)