Cargando…
Tumor Connectomics: Mapping the Intra-Tumoral Complex Interaction Network Using Machine Learning
SIMPLE SUMMARY: Understanding the complex network of high-level relationships within tumors and between surrounding tissue is challenging and not fully understood. Our findings demonstrate that the tumor connectomics framework (TCF) models different networks within the tumors and surrounding tissue...
Autores principales: | Parekh, Vishwa S., Pillai, Jay J., Macura, Katarzyna J., LaViolette, Peter S., Jacobs, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946165/ https://www.ncbi.nlm.nih.gov/pubmed/35326634 http://dx.doi.org/10.3390/cancers14061481 |
Ejemplares similares
-
A Multidimensional Connectomics- and Radiomics-Based Advanced Machine-Learning Framework to Distinguish Radiation Necrosis from True Progression in Brain Metastases
por: Cao, Yilin, et al.
Publicado: (2023) -
Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI
por: Parekh, Vishwa S., et al.
Publicado: (2017) -
Integrated Multiparametric Radiomics and Informatics System for Characterizing Breast Tumor Characteristics with the OncotypeDX Gene Assay
por: Jacobs, Michael A., et al.
Publicado: (2020) -
Multiparametric deep learning tissue signatures for a radiological biomarker of breast cancer: Preliminary results
por: Parekh, Vishwa S., et al.
Publicado: (2019) -
Comparison of a machine and deep learning model for automated tumor annotation on digitized whole slide prostate cancer histology
por: Duenweg, Savannah R., et al.
Publicado: (2023)