Cargando…

Aptamer Targets Triple-Negative Breast Cancer through Specific Binding to Surface CD49c

SIMPLE SUMMARY: Targeted therapy directed against many biomarkers has not shown significant improvement in outcome in TNBC, and therefore it is urgent to discover more biomarker candidates. Here, we found a DNA aptamer that bound to TNBC cells and identified CD49c as a specific surface marker for TN...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Quanyuan, Zeng, Zihua, Qi, Jianjun, Zhao, Yingxin, Liu, Xiaohui, Chen, Zhenghu, Zhou, Haijun, Zu, Youli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946172/
https://www.ncbi.nlm.nih.gov/pubmed/35326720
http://dx.doi.org/10.3390/cancers14061570
Descripción
Sumario:SIMPLE SUMMARY: Targeted therapy directed against many biomarkers has not shown significant improvement in outcome in TNBC, and therefore it is urgent to discover more biomarker candidates. Here, we found a DNA aptamer that bound to TNBC cells and identified CD49c as a specific surface marker for TNBC cells using the aptamer-facilitated biomarker discovery technology. The findings suggest that this DNA aptamer can be a drug delivery vehicle and CD49c is a potential target of targeted therapy for TNBC. ABSTRACT: Although targeted cancer therapy can induce higher therapeutic efficacy and cause fewer side effects in patients, the lack of targetable biomarkers on triple-negative breast cancer (TNBC) cells limits the development of targeted therapies by antibody technology. Therefore, we investigated an alternative approach to target TNBC by using the PDGC21T aptamer, which selectively binds to poorly differentiated carcinoma cells and tumor tissues, although the cellular target is still unknown. We found that synthetic aptamer probes specifically bound cultured TNBC cells in vitro and selectively targeted TNBC xenografts in vivo. Subsequently, to identify the target molecule on TNBC cells, we performed aptamer-mediated immunoprecipitation in lysed cell membranes followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Sequencing analysis revealed a highly conserved peptide sequence consistent with the cell surface protein CD49c (integrin α3). For target validation, we stained cultured TNBC and non-TNBC cells with an aptamer probe or a CD49c antibody and found similar cell staining patterns. Finally, competition cell-binding assays using both aptamer and anti-CD49c antibody revealed that CD49c is the biomarker targeted by the PDGC21T aptamer on TNBC cells. Our findings provide a molecular foundation for the development of targeted TNBC therapy using the PDGC21T aptamer as a targeting ligand.