Cargando…
Image Classification of Alzheimer’s Disease Based on External-Attention Mechanism and Fully Convolutional Network
Automatic and accurate classification of Alzheimer’s disease is a challenging and promising task. Fully Convolutional Network (FCN) can classify images at the pixel level. Adding an attention mechanism to the Fully Convolutional Network can effectively improve the classification performance of the m...
Autores principales: | Jiang, Mingfeng, Yan, Bin, Li, Yang, Zhang, Jucheng, Li, Tieqiang, Ke, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946519/ https://www.ncbi.nlm.nih.gov/pubmed/35326275 http://dx.doi.org/10.3390/brainsci12030319 |
Ejemplares similares
-
HADLN: Hybrid Attention-Based Deep Learning Network for Automated Arrhythmia Classification
por: Jiang, Mingfeng, et al.
Publicado: (2021) -
FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution
por: Jiang, Mingfeng, et al.
Publicado: (2021) -
Bayesian Fully Convolutional Networks for Brain Image Registration
por: Cui, Kunpeng, et al.
Publicado: (2021) -
Classification of plug seedling quality by improved convolutional neural network with an attention mechanism
por: Du, Xinwu, et al.
Publicado: (2022) -
A Hyperspectral Image Classification Method Based on the Nonlocal Attention Mechanism of a Multiscale Convolutional Neural Network
por: Li, Mingtian, et al.
Publicado: (2023)