Cargando…

Pterygium and Ocular Surface Squamous Neoplasia: Optical Biopsy Using a Novel Autofluorescence Multispectral Imaging Technique

SIMPLE SUMMARY: Cancer is able to damage the surface of the eye, especially in countries like Australia with high exposure to ultraviolet radiation from the sun. Such cancer (ocular surface squamous neoplasia or OSSN) is similar in appearance to a common and benign eye disease called pterygium. Curr...

Descripción completa

Detalles Bibliográficos
Autores principales: Habibalahi, Abbas, Allende, Alexandra, Michael, Jesse, Anwer, Ayad G., Campbell, Jared, Mahbub, Saabah B., Bala, Chandra, Coroneo, Minas T., Goldys, Ewa M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946656/
https://www.ncbi.nlm.nih.gov/pubmed/35326744
http://dx.doi.org/10.3390/cancers14061591
Descripción
Sumario:SIMPLE SUMMARY: Cancer is able to damage the surface of the eye, especially in countries like Australia with high exposure to ultraviolet radiation from the sun. Such cancer (ocular surface squamous neoplasia or OSSN) is similar in appearance to a common and benign eye disease called pterygium. Currently, eye biopsy is the gold standard diagnostic method for OSSN, which is traumatic for the patient, carries risks, and has been potentially unnecessary in patients diagnosed with pterygium only. This research introduces an imaging-based method for OSSN screening, which will reduce pressure on health resources—and hopefully eliminate the need for eye biopsy in cases of suspected OSSN. ABSTRACT: In this study, differentiation of pterygium vs. ocular surface squamous neoplasia based on multispectral autofluorescence imaging technique was investigated. Fifty (N = 50) patients with histopathological diagnosis of pterygium (PTG) and/or ocular surface squamous neoplasia (OSSN) were recruited. Fixed unstained biopsy specimens were imaged by multispectral microscopy. Tissue autofluorescence images were obtained with a custom-built fluorescent microscope with 59 spectral channels, each with specific excitation and emission wavelength ranges, suitable for the most abundant tissue fluorophores such as elastin, flavins, porphyrin, and lipofuscin. Images were analyzed using a new classification framework called fused-classification, designed to minimize interpatient variability, as an established support vector machine learning method. Normal, PTG, and OSSN regions were automatically detected and delineated, with accuracy evaluated against expert assessment by a specialist in OSSN pathology. Signals from spectral channels yielding signals from elastin, flavins, porphyrin, and lipofuscin were significantly different between regions classified as normal, PTG, and OSSN (p < 0.01). Differential diagnosis of PTG/OSSN and normal tissue had accuracy, sensitivity, and specificity of 88 ± 6%, 84 ± 10% and 91 ± 6%, respectively. Our automated diagnostic method generated maps of the reasonably well circumscribed normal/PTG and OSSN interface. PTG and OSSN margins identified by our automated analysis were in close agreement with the margins found in the H&E sections. Such a map can be rapidly generated on a real time basis and potentially used for intraoperative assessment.