Cargando…

Genomics of Plasma Cell Leukemia

SIMPLE SUMMARY: Plasma cell leukemia (PCL) is a very aggressive plasma cell disorder with a dismal prognosis, despite the therapeutic progress made in the last few years. The implementation of genomic high-throughput technologies in the clinical setting has revealed new insights into the genomic lan...

Descripción completa

Detalles Bibliográficos
Autores principales: Rojas, Elizabeta A., Gutiérrez, Norma C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946729/
https://www.ncbi.nlm.nih.gov/pubmed/35326746
http://dx.doi.org/10.3390/cancers14061594
Descripción
Sumario:SIMPLE SUMMARY: Plasma cell leukemia (PCL) is a very aggressive plasma cell disorder with a dismal prognosis, despite the therapeutic progress made in the last few years. The implementation of genomic high-throughput technologies in the clinical setting has revealed new insights into the genomic landscape of PCL, some of which may have an impact on the development of novel therapeutic approaches. The purpose of this review is to provide a comprehensive overview and update of the genomic studies carried out in PCL. ABSTRACT: Plasma cell leukemia (PCL) is a rare and highly aggressive plasma cell dyscrasia characterized by the presence of clonal circulating plasma cells in peripheral blood. PCL accounts for approximately 2–4% of all multiple myeloma (MM) cases. PCL can be classified in primary PCL (pPCL) when it appears de novo and in secondary PCL (sPCL) when it arises from a pre-existing relapsed/refractory MM. Despite the improvement in treatment modalities, the prognosis remains very poor. There is growing evidence that pPCL is a different clinicopathological entity as compared to MM, although the mechanisms underlying its pathogenesis are not fully elucidated. The development of new high-throughput technologies, such as microarrays and new generation sequencing (NGS), has contributed to a better understanding of the peculiar biological and clinical features of this disease. Relevant information is now available on cytogenetic alterations, genetic variants, transcriptome, methylation patterns, and non-coding RNA profiles. Additionally, attempts have been made to integrate genomic alterations with gene expression data. However, given the low frequency of PCL, most of the genetic information comes from retrospective studies with a small number of patients, sometimes leading to inconsistent results.