Cargando…
Identification of western North Atlantic odontocete echolocation click types using machine learning and spatiotemporal correlates
A combination of machine learning and expert analyst review was used to detect odontocete echolocation clicks, identify dominant click types, and classify clicks in 32 years of acoustic data collected at 11 autonomous monitoring sites in the western North Atlantic between 2016 and 2019. Previously-d...
Autores principales: | Cohen, Rebecca E., Frasier, Kaitlin E., Baumann-Pickering, Simone, Wiggins, Sean M., Rafter, Macey A., Baggett, Lauren M., Hildebrand, John A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946748/ https://www.ncbi.nlm.nih.gov/pubmed/35324943 http://dx.doi.org/10.1371/journal.pone.0264988 |
Ejemplares similares
-
Discriminating and classifying odontocete echolocation clicks in the Hawaiian Islands using machine learning methods
por: Ziegenhorn, Morgan A., et al.
Publicado: (2022) -
Automated classification of dolphin echolocation click types from the Gulf of Mexico
por: Frasier, Kaitlin E., et al.
Publicado: (2017) -
A machine learning pipeline for classification of cetacean echolocation clicks in large underwater acoustic datasets
por: Frasier, Kaitlin E.
Publicado: (2021) -
The startle reflex in echolocating odontocetes: basic physiology and practical implications
por: Götz, Thomas, et al.
Publicado: (2020) -
Odontocete spatial patterns and temporal drivers of detection at sites in the Hawaiian islands
por: Ziegenhorn, Morgan A., et al.
Publicado: (2023)