Cargando…
Machine Learning Applications for Differentiation of Glioma from Brain Metastasis—A Systematic Review
SIMPLE SUMMARY: We present a systematic review of published reports on machine learning (ML) applications for the differentiation of gliomas from brain metastases by summarizing study characteristics, strengths, and pitfalls. Based on these findings, we present recommendations for future research in...
Autores principales: | Jekel, Leon, Brim, Waverly R., von Reppert, Marc, Staib, Lawrence, Cassinelli Petersen, Gabriel, Merkaj, Sara, Subramanian, Harry, Zeevi, Tal, Payabvash, Seyedmehdi, Bousabarah, Khaled, Lin, MingDe, Cui, Jin, Brackett, Alexandria, Mahajan, Amit, Omuro, Antonio, Johnson, Michele H., Chiang, Veronica L., Malhotra, Ajay, Scheffler, Björn, Aboian, Mariam S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946855/ https://www.ncbi.nlm.nih.gov/pubmed/35326526 http://dx.doi.org/10.3390/cancers14061369 |
Ejemplares similares
-
OTHR-15. Assessment of TRIPOD adherence in articles developing machine learning models for differentiation of glioma from brain metastasis
por: Jekel, Leon, et al.
Publicado: (2021) -
OTHR-12. The development of machine learning algorithms for the differentiation of glioma and brain metastases – a systematic review
por: Brim, Waverly Rose, et al.
Publicado: (2021) -
Identifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries
por: Tillmanns, Niklas, et al.
Publicado: (2022) -
Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis
por: Bahar, Ryan C., et al.
Publicado: (2022) -
Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities
por: Merkaj, Sara, et al.
Publicado: (2022)