Cargando…
An Edge Server Placement Method Based on Reinforcement Learning
In mobile edge computing systems, the edge server placement problem is mainly tackled as a multi-objective optimization problem and solved with mixed integer programming, heuristic or meta-heuristic algorithms, etc. These methods, however, have profound defect implications such as poor scalability,...
Autores principales: | Luo, Fei, Zheng, Shuai, Ding, Weichao, Fuentes, Joel, Li, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946978/ https://www.ncbi.nlm.nih.gov/pubmed/35327828 http://dx.doi.org/10.3390/e24030317 |
Ejemplares similares
-
Cost-Effective Edge Server Placement in Wireless Metropolitan Area Networks
por: Zeng, Feng, et al.
Publicado: (2018) -
An Opposition-Based Learning CRO Algorithm for Solving the Shortest Common Supersequence Problem
por: Luo, Fei, et al.
Publicado: (2022) -
Domain Knowledge-Based Evolutionary Reinforcement Learning for Sensor Placement
por: Song, Mingxuan, et al.
Publicado: (2022) -
A Soar-Based Space Exploration Algorithm for Mobile Robots
por: Luo, Fei, et al.
Publicado: (2022) -
Reinforcement Learning-Based Adaptive Streaming Scheme with Edge Computing Assistance
por: Kim, Minsu, et al.
Publicado: (2022)