Cargando…

Open-Source, Adaptable, All-in-One Smartphone-Based System for Quantitative Analysis of Point-of-Care Diagnostics

Point-of-care (POC) diagnostics, in particular lateral flow assays (LFA), represent a great opportunity for rapid, precise, low-cost and accessible diagnosis of disease. Especially with the ongoing coronavirus disease 2019 (COVID-19) pandemic, rapid point-of-care tests are becoming everyday tools fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Schary, Weronika, Paskali, Filip, Rentschler, Simone, Ruppert, Christoph, Wagner, Gabriel E., Steinmetz, Ivo, Deigner, Hans-Peter, Kohl, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947044/
https://www.ncbi.nlm.nih.gov/pubmed/35328142
http://dx.doi.org/10.3390/diagnostics12030589
Descripción
Sumario:Point-of-care (POC) diagnostics, in particular lateral flow assays (LFA), represent a great opportunity for rapid, precise, low-cost and accessible diagnosis of disease. Especially with the ongoing coronavirus disease 2019 (COVID-19) pandemic, rapid point-of-care tests are becoming everyday tools for identification and prevention. Using smartphones as biosensors can enhance POC devices as portable, low-cost platforms for healthcare and medicine, food and environmental monitoring, improving diagnosis and documentation in remote, low-resource locations. We present an open-source, all-in-one smartphone-based system for quantitative analysis of LFAs. It consists of a 3D-printed photo box, a smartphone for image acquisition, and an R Shiny software package with modular, customizable analysis workflow for image editing, analysis, data extraction, calibration and quantification of the assays. This system is less expensive than commonly used hardware and software, so it could prove very beneficial for diagnostic testing in the context of pandemics, as well as in low-resource countries.