Cargando…
Variational Bayesian Inference for Nonlinear Hawkes Process with Gaussian Process Self-Effects
Traditionally, Hawkes processes are used to model time-continuous point processes with history dependence. Here, we propose an extended model where the self-effects are of both excitatory and inhibitory types and follow a Gaussian Process. Whereas previous work either relies on a less flexible param...
Autores principales: | Malem-Shinitski, Noa, Ojeda, César, Opper, Manfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947061/ https://www.ncbi.nlm.nih.gov/pubmed/35327867 http://dx.doi.org/10.3390/e24030356 |
Ejemplares similares
-
A mathematical model of local and global attention in natural scene viewing
por: Malem-Shinitski, Noa, et al.
Publicado: (2020) -
Flexible and Efficient Inference with Particles for the Variational Gaussian Approximation
por: Galy-Fajou, Théo, et al.
Publicado: (2021) -
Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement
por: Ren, Ming Jun, et al.
Publicado: (2018) -
Stochastic Control for Bayesian Neural Network Training
por: Winkler, Ludwig, et al.
Publicado: (2022) -
Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes
por: Xu, Xiaoguang, et al.
Publicado: (2016)