Cargando…
Iron Regulatory Protein 1 Inhibits Ferritin Translation Responding to OsHV-1 Infection in Ark Clams, Scapharca Broughtonii
Elemental iron is an indispensable prosthetic group of DNA replication relative enzymes. The upregulation of ferritin translation by iron regulatory proteins (IRP1) in host cells is a nutritional immune strategy to sequester available iron to pathogens. The efficient replication of Ostreid herpesvir...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947174/ https://www.ncbi.nlm.nih.gov/pubmed/35326435 http://dx.doi.org/10.3390/cells11060982 |
Sumario: | Elemental iron is an indispensable prosthetic group of DNA replication relative enzymes. The upregulation of ferritin translation by iron regulatory proteins (IRP1) in host cells is a nutritional immune strategy to sequester available iron to pathogens. The efficient replication of Ostreid herpesvirus 1 (OsHV-1), a lethal dsDNA virus among bivalves, depends on available iron. OsHV-1 infection was found to trigger iron limitation in ark clams; however, it is still an enigma how OsHV-1 successfully conducted rapid replication, escaping host iron limitations. In this study, we identified the IRP1 protein (designated as SbIRP-1) in the ark clam (Scapharca broughtonii) and found it could bind to the iron-responsive element (IRE) of ferritin (SbFn) mRNA based on electrophoretic mobility shift assay (EMSA). Knockdown of SbIRP-1 expression (0.24 ± 1.82-fold of that in NC group, p < 0.01) by RNA interference resulted in the accumulation of SbFn in hemocytes (1.79 ± 0.01-fold, p < 0.01) post-24 h of enhanced RNA interference injection. During OsHV-1 infection, SbFn mRNA was significantly upregulated in hemocytes from 24 h to 60 h, while its protein level was significantly reduced from 24 h to 48 h, with the lowest value at 36 h post-infection (0.11 ± 0.01-fold, p < 0.01). Further analysis by RNA immunoprecipitation assays showed that OsHV-1 could enhance the binding of SbIRP-1 with the SbFn IRE, which was significantly increased (2.17 ± 0.25-fold, p < 0.01) at 36 h post-infection. Consistently, SbIRP-1 protein expression was significantly increased in hemocytes from 12 h to 48 h post OsHV-1 infection (p < 0.01). In conclusion, the results suggest that OsHV-1 infection could suppress post-transcriptional translation of SbFn through the regulation of SbIRP-1, which likely contributes to OsHV-1 evasion of SbFn-mediating host iron limitation. |
---|