Cargando…
A Hybrid Method Using HAVOK Analysis and Machine Learning for Predicting Chaotic Time Series
The prediction of chaotic time series systems has remained a challenging problem in recent decades. A hybrid method using Hankel Alternative View Of Koopman (HAVOK) analysis and machine learning (HAVOK-ML) is developed to predict chaotic time series. HAVOK-ML simulates the time series by reconstruct...
Autores principales: | Yang, Jinhui, Zhao, Juan, Song, Junqiang, Wu, Jianping, Zhao, Chengwu, Leng, Hongze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947207/ https://www.ncbi.nlm.nih.gov/pubmed/35327919 http://dx.doi.org/10.3390/e24030408 |
Ejemplares similares
-
Playing HAVOK on the Chaos Caused by Internet Trolls
por: Martynova, Elena, et al.
Publicado: (2023) -
A Framework for Four-Dimensional Variational Data Assimilation Based on Machine Learning
por: Dong, Renze, et al.
Publicado: (2022) -
Couple of the Variational Iteration Method and Fractional-Order Legendre Functions Method for Fractional Differential Equations
por: Yin, Fukang, et al.
Publicado: (2014) -
Generalized relational tensors for chaotic time series
por: A. Gromov, Vasilii, et al.
Publicado: (2023) -
Generative adversarial network based on chaotic time series
por: Naruse, Makoto, et al.
Publicado: (2019)