Cargando…
Spatial Modeling of Precipitation Based on Data-Driven Warping of Gaussian Processes
Modeling and forecasting spatiotemporal patterns of precipitation is crucial for managing water resources and mitigating water-related hazards. Globally valid spatiotemporal models of precipitation are not available. This is due to the intermittent nature, non-Gaussian distribution, and complex geog...
Autores principales: | Agou, Vasiliki D., Pavlides, Andrew, Hristopulos, Dionissios T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947256/ https://www.ncbi.nlm.nih.gov/pubmed/35327832 http://dx.doi.org/10.3390/e24030321 |
Ejemplares similares
-
Ising Model for Interpolation of Spatial Data on Regular Grids
por: Žukovič, Milan, et al.
Publicado: (2021) -
Spatial Warped Gaussian Processes: Estimation and Efficient Field Reconstruction
por: Peters, Gareth W., et al.
Publicado: (2021) -
Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle
por: Kaniadakis, Giorgio, et al.
Publicado: (2018) -
Kaniadakis Functions beyond Statistical Mechanics: Weakest-Link Scaling, Power-Law Tails, and Modified Lognormal Distribution
por: Hristopulos, Dionissios T., et al.
Publicado: (2022) -
Alignment of spatial genomics data using deep Gaussian processes
por: Jones, Andrew, et al.
Publicado: (2023)