Cargando…
Task’s Choice: Pruning-Based Feature Sharing (PBFS) for Multi-Task Learning
In most of the existing multi-task learning (MTL) models, multiple tasks’ public information is learned by sharing parameters across hidden layers, such as hard sharing, soft sharing, and hierarchical sharing. One promising approach is to introduce model pruning into information learning, such as sp...
Autores principales: | Chen, Ying, Yu, Jiong, Zhao, Yutong, Chen, Jiaying, Du, Xusheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947268/ https://www.ncbi.nlm.nih.gov/pubmed/35327942 http://dx.doi.org/10.3390/e24030432 |
Ejemplares similares
-
Biomedical named entity recognition with the combined feature attention and fully-shared multi-task learning
por: Zhang, Zhiyu, et al.
Publicado: (2022) -
Seeing Pedestrian in the Dark via Multi-Task Feature Fusing-Sharing Learning for Imaging Sensors
por: Wang, Yuanzhi, et al.
Publicado: (2020) -
Small Network for Lightweight Task in Computer Vision: A Pruning Method Based on Feature Representation
por: Ge, Yisu, et al.
Publicado: (2021) -
Task-Projected Hyperdimensional Computing for Multi-task Learning
por: Chang, Cheng-Yang, et al.
Publicado: (2020) -
Multi-Task Network Representation Learning
por: Xie, Yu, et al.
Publicado: (2020)