Cargando…

Circulating Tumor DNA in Gastric and Gastroesophageal Junction Cancer

Tumor cells shed DNA into the plasma. “Liquid biopsy” analysis of mutations or other genomic alterations in circulating cell-free DNA (cfDNA) may provide us with a tool to detect minimal residual cancer, comprehensively profile the genomic tumor landscape in search of druggable targets, and monitor...

Descripción completa

Detalles Bibliográficos
Autores principales: Paschold, Lisa, Binder, Mascha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947276/
https://www.ncbi.nlm.nih.gov/pubmed/35323320
http://dx.doi.org/10.3390/curroncol29030120
Descripción
Sumario:Tumor cells shed DNA into the plasma. “Liquid biopsy” analysis of mutations or other genomic alterations in circulating cell-free DNA (cfDNA) may provide us with a tool to detect minimal residual cancer, comprehensively profile the genomic tumor landscape in search of druggable targets, and monitor cancers non-invasively over time for treatment failure or emerging treatment-resistant tumor subclones. While liquid biopsies have not yet entered routine clinical management in patients with gastric and gastroesophageal junction cancers, this group of diseases may benefit from such advanced diagnostic tools due to their pronounced genetic spatiotemporal heterogeneity and limitations in imaging sensitivity. Moreover, as the armamentarium of targeted treatment approaches and immunotherapies expands, cfDNA analyses may reveal their utility not only as a biomarker of response but also for precision monitoring. In this review, we discuss the different applications of cfDNA analyses in patients with gastric and gastroesophageal junction cancer and the technical challenges that such liquid biopsies have yet to overcome.