Cargando…

Categorical Smoothness of 4-Manifolds from Quantum Symmetries and the Information Loss Paradox

In this paper, we focus on some aspects of the relation of spacetime and quantum mechanics and the study counterparts (in Set) of the categorical local symmetries of smooth 4-manifolds. In the set-theoretic limit, there emerge some exotic smoothness structures on [Formula: see text] (hence the Riema...

Descripción completa

Detalles Bibliográficos
Autores principales: Król, Jerzy, Asselmeyer-Maluga, Torsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947280/
https://www.ncbi.nlm.nih.gov/pubmed/35327902
http://dx.doi.org/10.3390/e24030391
Descripción
Sumario:In this paper, we focus on some aspects of the relation of spacetime and quantum mechanics and the study counterparts (in Set) of the categorical local symmetries of smooth 4-manifolds. In the set-theoretic limit, there emerge some exotic smoothness structures on [Formula: see text] (hence the Riemannian nonvanishing curvature), which fit well with the quantum mechanical lattice of projections on infinite-dimensional Hilbert spaces. The method we follow is formalization localized on the open covers of the spacetime manifold. We discuss our findings in the context of the information paradox assigned to evaporating black holes. A black hole can evaporate entirely, but the smoothness structure of spacetime will be altered and, in this way, the missing information about the initial states of matter forming the black hole will be encoded. Thus, the possible global geometric remnant of black holes in spacetime is recognized as exotic 4-smoothness. The full-fledged verification of this proposal will presumably be possible within the scope of future quantum gravity theory research.