Cargando…
Neural Network Structure Optimization by Simulated Annealing
A critical problem in large neural networks is over parameterization with a large number of weight parameters, which limits their use on edge devices due to prohibitive computational power and memory/storage requirements. To make neural networks more practical on edge devices and real-time industria...
Autores principales: | Kuo, Chun Lin, Kuruoglu, Ercan Engin, Chan, Wai Kin Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947290/ https://www.ncbi.nlm.nih.gov/pubmed/35327859 http://dx.doi.org/10.3390/e24030348 |
Ejemplares similares
-
Modeling SARS-CoV-2 nucleotide mutations as a stochastic process
por: Lim Kai Rong, Maverick, et al.
Publicado: (2023) -
Multi-objective simulated annealing for hyper-parameter optimization in convolutional neural networks
por: Gülcü, Ayla, et al.
Publicado: (2021) -
Quantum versus simulated annealing in wireless interference network optimization
por: Wang, Chi, et al.
Publicado: (2016) -
Evaluation and Image Analysis of Enterprise Human Resource Management Based on the Simulated Annealing-Optimized BP Neural Network
por: Zhao, Bo, et al.
Publicado: (2021) -
BP Neural Network Based on Simulated Annealing Algorithm Optimization for Financial Crisis Dynamic Early Warning Model
por: Chen, Ying
Publicado: (2021)