Cargando…

Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface

Growing interest in bacteriophage research and use, especially as an alternative treatment option for multidrug-resistant bacterial infection, requires rapid development of production methods and strengthening of bacteriophage activities. Bacteriophage adsorption to host cells initiates the process...

Descripción completa

Detalles Bibliográficos
Autores principales: Grygorcewicz, Bartłomiej, Rakoczy, Rafał, Roszak, Marta, Konopacki, Maciej, Kordas, Marian, Piegat, Agnieszka, Serwin, Natalia, Cecerska-Heryć, Elżbieta, El Fray, Miroslawa, Dołęgowska, Barbara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947294/
https://www.ncbi.nlm.nih.gov/pubmed/35723311
http://dx.doi.org/10.3390/cimb44030088
_version_ 1784674405562974208
author Grygorcewicz, Bartłomiej
Rakoczy, Rafał
Roszak, Marta
Konopacki, Maciej
Kordas, Marian
Piegat, Agnieszka
Serwin, Natalia
Cecerska-Heryć, Elżbieta
El Fray, Miroslawa
Dołęgowska, Barbara
author_facet Grygorcewicz, Bartłomiej
Rakoczy, Rafał
Roszak, Marta
Konopacki, Maciej
Kordas, Marian
Piegat, Agnieszka
Serwin, Natalia
Cecerska-Heryć, Elżbieta
El Fray, Miroslawa
Dołęgowska, Barbara
author_sort Grygorcewicz, Bartłomiej
collection PubMed
description Growing interest in bacteriophage research and use, especially as an alternative treatment option for multidrug-resistant bacterial infection, requires rapid development of production methods and strengthening of bacteriophage activities. Bacteriophage adsorption to host cells initiates the process of infection. The rotating magnetic field (RMF) is a promising biotechnological method for process intensification, especially for the intensification of micromixing and mass transfer. This study evaluates the use of RMF to enhance the infection process by influencing bacteriophage adsorption rate. The RMF exposition decreased the t(50) and t(75) of bacteriophages T4 on Escherichia coli cells and vb_SauM_A phages on Staphylococcus aureus cells. The T4 phage adsorption rate increased from 3.13 × 10(−9) mL × min(−1) to 1.64 × 10(−8) mL × min(−1). The adsorption rate of vb_SauM_A phages exposed to RMF increased from 4.94 × 10(−9) mL × min(−1) to 7.34 × 10(−9) mL × min(−1). Additionally, the phage T4 zeta potential changed under RMF from −11.1 ± 0.49 mV to −7.66 ± 0.29 for unexposed and RMF-exposed bacteriophages, respectively.
format Online
Article
Text
id pubmed-8947294
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89472942022-06-04 Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface Grygorcewicz, Bartłomiej Rakoczy, Rafał Roszak, Marta Konopacki, Maciej Kordas, Marian Piegat, Agnieszka Serwin, Natalia Cecerska-Heryć, Elżbieta El Fray, Miroslawa Dołęgowska, Barbara Curr Issues Mol Biol Article Growing interest in bacteriophage research and use, especially as an alternative treatment option for multidrug-resistant bacterial infection, requires rapid development of production methods and strengthening of bacteriophage activities. Bacteriophage adsorption to host cells initiates the process of infection. The rotating magnetic field (RMF) is a promising biotechnological method for process intensification, especially for the intensification of micromixing and mass transfer. This study evaluates the use of RMF to enhance the infection process by influencing bacteriophage adsorption rate. The RMF exposition decreased the t(50) and t(75) of bacteriophages T4 on Escherichia coli cells and vb_SauM_A phages on Staphylococcus aureus cells. The T4 phage adsorption rate increased from 3.13 × 10(−9) mL × min(−1) to 1.64 × 10(−8) mL × min(−1). The adsorption rate of vb_SauM_A phages exposed to RMF increased from 4.94 × 10(−9) mL × min(−1) to 7.34 × 10(−9) mL × min(−1). Additionally, the phage T4 zeta potential changed under RMF from −11.1 ± 0.49 mV to −7.66 ± 0.29 for unexposed and RMF-exposed bacteriophages, respectively. MDPI 2022-03-17 /pmc/articles/PMC8947294/ /pubmed/35723311 http://dx.doi.org/10.3390/cimb44030088 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Grygorcewicz, Bartłomiej
Rakoczy, Rafał
Roszak, Marta
Konopacki, Maciej
Kordas, Marian
Piegat, Agnieszka
Serwin, Natalia
Cecerska-Heryć, Elżbieta
El Fray, Miroslawa
Dołęgowska, Barbara
Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface
title Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface
title_full Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface
title_fullStr Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface
title_full_unstemmed Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface
title_short Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface
title_sort rotating magnetic field-assisted reactor enhances mechanisms of phage adsorption on bacterial cell surface
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947294/
https://www.ncbi.nlm.nih.gov/pubmed/35723311
http://dx.doi.org/10.3390/cimb44030088
work_keys_str_mv AT grygorcewiczbartłomiej rotatingmagneticfieldassistedreactorenhancesmechanismsofphageadsorptiononbacterialcellsurface
AT rakoczyrafał rotatingmagneticfieldassistedreactorenhancesmechanismsofphageadsorptiononbacterialcellsurface
AT roszakmarta rotatingmagneticfieldassistedreactorenhancesmechanismsofphageadsorptiononbacterialcellsurface
AT konopackimaciej rotatingmagneticfieldassistedreactorenhancesmechanismsofphageadsorptiononbacterialcellsurface
AT kordasmarian rotatingmagneticfieldassistedreactorenhancesmechanismsofphageadsorptiononbacterialcellsurface
AT piegatagnieszka rotatingmagneticfieldassistedreactorenhancesmechanismsofphageadsorptiononbacterialcellsurface
AT serwinnatalia rotatingmagneticfieldassistedreactorenhancesmechanismsofphageadsorptiononbacterialcellsurface
AT cecerskaherycelzbieta rotatingmagneticfieldassistedreactorenhancesmechanismsofphageadsorptiononbacterialcellsurface
AT elfraymiroslawa rotatingmagneticfieldassistedreactorenhancesmechanismsofphageadsorptiononbacterialcellsurface
AT dołegowskabarbara rotatingmagneticfieldassistedreactorenhancesmechanismsofphageadsorptiononbacterialcellsurface