Cargando…
Use of U-Net Convolutional Neural Networks for Automated Segmentation of Fecal Material for Objective Evaluation of Bowel Preparation Quality in Colonoscopy
Background: Adequate bowel cleansing is important for colonoscopy performance evaluation. Current bowel cleansing evaluation scales are subjective, with a wide variation in consistency among physicians and low reported rates of accuracy. We aim to use machine learning to develop a fully automatic se...
Autores principales: | Wang, Yen-Po, Jheng, Ying-Chun, Sung, Kuang-Yi, Lin, Hung-En, Hsin, I-Fang, Chen, Ping-Hsien, Chu, Yuan-Chia, Lu, David, Wang, Yuan-Jen, Hou, Ming-Chih, Lee, Fa-Yauh, Lu, Ching-Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947406/ https://www.ncbi.nlm.nih.gov/pubmed/35328166 http://dx.doi.org/10.3390/diagnostics12030613 |
Ejemplares similares
-
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Correction: DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022) -
Automated segmentation of vertebral cortex with 3D U-Net-based deep convolutional neural network
por: Li, Yang, et al.
Publicado: (2022) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
LKC-Net: large kernel convolution object detection network
por: Wang, Weina, et al.
Publicado: (2023)