Cargando…

Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics

The mechanism of cerebral blood flow autoregulation can be of great importance in diagnosing and controlling a diversity of cerebrovascular pathologies such as vascular dementia, brain injury, and neurodegenerative diseases. To assess it, there are several methods that use changing postures, such as...

Descripción completa

Detalles Bibliográficos
Autores principales: Chacón, Max, Rojas-Pescio, Hector, Peñaloza, Sergio, Landerretche, Jean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947420/
https://www.ncbi.nlm.nih.gov/pubmed/35327938
http://dx.doi.org/10.3390/e24030428
_version_ 1784674434965045248
author Chacón, Max
Rojas-Pescio, Hector
Peñaloza, Sergio
Landerretche, Jean
author_facet Chacón, Max
Rojas-Pescio, Hector
Peñaloza, Sergio
Landerretche, Jean
author_sort Chacón, Max
collection PubMed
description The mechanism of cerebral blood flow autoregulation can be of great importance in diagnosing and controlling a diversity of cerebrovascular pathologies such as vascular dementia, brain injury, and neurodegenerative diseases. To assess it, there are several methods that use changing postures, such as sit-stand or squat-stand maneuvers. However, the evaluation of the dynamic cerebral blood flow autoregulation (dCA) in these postures has not been adequately studied using more complex models, such as non-linear ones. Moreover, dCA can be considered part of a more complex mechanism called cerebral hemodynamics, where others (CO(2) reactivity and neurovascular-coupling) that affect cerebral blood flow (BF) are included. In this work, we analyzed postural influences using non-linear machine learning models of dCA and studied characteristics of cerebral hemodynamics under statistical complexity using eighteen young adult subjects, aged 27 ± 6.29 years, who took the systemic or arterial blood pressure (BP) and cerebral blood flow velocity (BFV) for five minutes in three different postures: stand, sit, and lay. With models of a Support Vector Machine (SVM) through time, we used an AutoRegulatory Index (ARI) to compare the dCA in different postures. Using wavelet entropy, we estimated the statistical complexity of BFV for three postures. Repeated measures ANOVA showed that only the complexity of lay-sit had significant differences.
format Online
Article
Text
id pubmed-8947420
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-89474202022-03-25 Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics Chacón, Max Rojas-Pescio, Hector Peñaloza, Sergio Landerretche, Jean Entropy (Basel) Article The mechanism of cerebral blood flow autoregulation can be of great importance in diagnosing and controlling a diversity of cerebrovascular pathologies such as vascular dementia, brain injury, and neurodegenerative diseases. To assess it, there are several methods that use changing postures, such as sit-stand or squat-stand maneuvers. However, the evaluation of the dynamic cerebral blood flow autoregulation (dCA) in these postures has not been adequately studied using more complex models, such as non-linear ones. Moreover, dCA can be considered part of a more complex mechanism called cerebral hemodynamics, where others (CO(2) reactivity and neurovascular-coupling) that affect cerebral blood flow (BF) are included. In this work, we analyzed postural influences using non-linear machine learning models of dCA and studied characteristics of cerebral hemodynamics under statistical complexity using eighteen young adult subjects, aged 27 ± 6.29 years, who took the systemic or arterial blood pressure (BP) and cerebral blood flow velocity (BFV) for five minutes in three different postures: stand, sit, and lay. With models of a Support Vector Machine (SVM) through time, we used an AutoRegulatory Index (ARI) to compare the dCA in different postures. Using wavelet entropy, we estimated the statistical complexity of BFV for three postures. Repeated measures ANOVA showed that only the complexity of lay-sit had significant differences. MDPI 2022-03-19 /pmc/articles/PMC8947420/ /pubmed/35327938 http://dx.doi.org/10.3390/e24030428 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chacón, Max
Rojas-Pescio, Hector
Peñaloza, Sergio
Landerretche, Jean
Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics
title Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics
title_full Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics
title_fullStr Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics
title_full_unstemmed Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics
title_short Machine Learning Models and Statistical Complexity to Analyze the Effects of Posture on Cerebral Hemodynamics
title_sort machine learning models and statistical complexity to analyze the effects of posture on cerebral hemodynamics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947420/
https://www.ncbi.nlm.nih.gov/pubmed/35327938
http://dx.doi.org/10.3390/e24030428
work_keys_str_mv AT chaconmax machinelearningmodelsandstatisticalcomplexitytoanalyzetheeffectsofpostureoncerebralhemodynamics
AT rojaspesciohector machinelearningmodelsandstatisticalcomplexitytoanalyzetheeffectsofpostureoncerebralhemodynamics
AT penalozasergio machinelearningmodelsandstatisticalcomplexitytoanalyzetheeffectsofpostureoncerebralhemodynamics
AT landerretchejean machinelearningmodelsandstatisticalcomplexitytoanalyzetheeffectsofpostureoncerebralhemodynamics