Cargando…
Adversarially Training MCMC with Non-Volume-Preserving Flows
Recently, flow models parameterized by neural networks have been used to design efficient Markov chain Monte Carlo (MCMC) transition kernels. However, inefficient utilization of gradient information of the target distribution or the use of volume-preserving flows limits their performance in sampling...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947447/ https://www.ncbi.nlm.nih.gov/pubmed/35327925 http://dx.doi.org/10.3390/e24030415 |